期刊文献+

基于EP的提升分类算法 被引量:1

A Novel Classified Algorithm Based on EP
下载PDF
导出
摘要 显露模式(EP)是支持度从一个数据集到另一个数据集发生显著变化的项集.EP具有很强的区分能力,可以建立很好的分类器.文中采用基于EP的分类算法CEEP建立基分类器,结合组合学习分类方法AdaBoost算法的思想,提出了一种新的分类算法A-E算法.算法使用加权样本建立基分类器,并根据分类结果改变样本权值,同时应用分类误差计算基分类器权重.最终,算法按权重组合每个分类器的分类结果.在UCI机器学习数据库的9个基准数据集上的实验表明,A-E算法都能有效地减低泛化误差,并具有较高的分类准确率. Emerging pattem(EP) are itemsets whose supports change significantly from one data class to another. EP are very strong at differentiating samples between classes, so they are useful for constructing accurate classifiers. This work proposes a novel EP-based classification method(A-E), which classification by classifiers with weights. The algorithm construct the basic classifier with the weighted sample, meanwhile calculate the classifier weights with the classification error. In the test, A-E can aggregate differentiating powers of classifiers. Our experiment study carried on 9 benchmark datasets from the UCI Machine Learning, A-E algorithm can effectivdy reduce the generalization error, and has high classification accuracy.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第8期229-231,235,共4页 Microelectronics & Computer
关键词 数据挖掘 分类 显露模式 ADABOOST Data mining classification emerging pattern AdaBoost
  • 相关文献

参考文献8

  • 1Dong G, Zhang X, Wong L, et al. CAEP: classification by aggregating emerging patterns[C]//Proc. of the 2nd Int'l Conf. On Discovery Science (DS' 99). Tokyo, Japan, 1999: 30 - 42.
  • 2Li J, Dong G, Ramamohanarao K. JEP- classifier: classification by aggregating jumping emerging patters [J ]. Knowledge and Information Systems, 2001(3) : 131 - 145.
  • 3Fan H, Ramamohanarao K. Noise tolerant classification by chi emerging patterns [ C ]//Proc. of 8th Pacific - Asia Conference Knowledge Discovery and Data Mining. Sydney, Australia, 2004:201- 206.
  • 4范明 魏芳.挖掘基本显露模式用于分类[J].计算机科学,2004,31:207-309.
  • 5Blake C, Merz C. UCI repository of machine learning databases[D]. Irvine, CA: University of California, Department of Information and Computer Science, 1998.
  • 6Liu B, Hsu W, Ma Y. Integrating classification and association rule mining[C]//In KDD'98. New York, 1998: 80 - 86.
  • 7Li W, Han J, Pei J. CMAR: accurate and efficient classification based on multiple class - association rules [ C ]// ICDM'01. San Jose, CA, 2001:369 - 376.
  • 8Fan H, Ramamohanarao K. A bayesian approach to use emerging patterns for classification[C]//Proc of 14th Australasian Database Conference. Australia, 2003 : 39 - 48.

共引文献7

同被引文献4

  • 1许洪涛 范明 昝红英.一种基于EP的中文文本自动分类算法.计算机研究与发展,2005,42(1):351-355.
  • 2DONG G,ZHANG X,WONG L,et al. CAEP:Classification by Aggregating emerging patterns[C]. Proc. of the 2rid Int' 1 Conf. on Discovery Science ( DS' 99 ). Berlin : Springer-Verlag, 1999:30 - 42.
  • 3范明 魏芳.挖掘基本显露模式用于分类[J].计算机科学,2004,31:207-309.
  • 4周舟.农家书屋与西部地区新农村建设研究[J].经济地理,2010,30(4):668-671. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部