期刊文献+

一种基于动态独立子空间分析的过程监控方法

Process Monitoring Method Based on Dynamic Independent Subspace Analysis
原文传递
导出
摘要 独立元分析(ICA)是近年来盲信号分离领域的热点问题,传统的ICA方法只能寻找信号与信号间的独立元,对信号组与信号组之间的独立性分析却无能为力。独立子空间分析法(ISA)则通过寻求矢量峭度最大化,对信号组之间进行独立性研究。根据这一理论提出动态独立子空间分析过程监控方法,针对过程变量自相关问题,构建时间序列子空间,随采样时间动态更新子空间数据,对其进行独立性研究,达到过程监控的目的。以TE过程为背景的仿真研究,验证了该方法的有效性。 Independent component analysis (ICA) is a focus in blind source separation researches recently. Traditional ICA method can only search for the independent component between signals, and be helpless to analyze the independence between signal groups. Independent Subspace Analysis (ISA) can research the independence of signal groups by searching for the maximum of vector kurtosis. According to this theory, the Dynamic independence ofsubspace (DISA) was studied by considering the self-correlation of the variables of the process, composing the time-series subspace and updating its data with the lapse of time, which makes the process monitoring method available. At last, the simulation results of TE process reveal this method is very effective.
作者 高翔 刘飞
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第13期3589-3592,共4页 Journal of System Simulation
基金 国家高技术研究发展计划(863计划)课题(2007AA04Z198) 教育部新世纪优秀人才支持计划(NCET-05-0485) 江南大学创新团队发展计划
关键词 独立分量分析 动态独立子空间分析 过程监控 TE过程 ICA dynamic independent subspace analysis process monitoring TE process
  • 相关文献

参考文献9

  • 1杨英华,吴英华,陈晓波,秦树凯.基于独立源分析的过程监测及故障诊断方法[J].系统仿真学报,2006,18(11):3220-3223. 被引量:3
  • 2Jong-Min Lee, ChangKyoo Yoo, In-Beum Lee. Statistical monitoring of dynamic processes based on dynamic independent component analysis. [J]. Chemical Engineering Science (S0009-2509), 2004, 59: 2995-3006.
  • 3Alok Sharma, Kuldip K Paliwal, Subspace independent component analysis using vector kurtosis [J]. Pattern Recognition (S0031-3203), 2006, 39: 2227-2232.
  • 4Wenfu Ku, Robert H. Storer, Christos Georgakis. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 1995, 30: 179-196.
  • 5Jin Wang, S. Joe Qin. A new subspace identification approach based on principal component analysis [J]. Journal of Process Control (S0959-1524), 2002, 12: 841-855.
  • 6张建明,林亚平,吴宏斌,杨格兰.独立成分分析的研究进展[J].系统仿真学报,2006,18(4):992-997. 被引量:31
  • 7Aapo Hyvarinen. Fast and robust fixed point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks (S1045-9227), 1999, 8(3): 622-634.
  • 8张道信,吴小培,沈谦,郭晓静.独立分量提取的在线算法及其应用[J].系统仿真学报,2004,16(1):17-19. 被引量:10
  • 9郭晓静,吴小培,张道信,孔敏,冯焕清.基于独立分量分析的脑电消噪与特征提取[J].系统仿真学报,2003,15(2):287-289. 被引量:20

二级参考文献58

  • 1杨福生 等.独立分量分析及其在生物医学工程中的应用[D]..99''中国生物医学电子学学术年会论文集[C].,1999..
  • 2[1]A J Bell,T J Sejnowski.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7(6): 1129-1159.
  • 3[2]T W Lee,et al.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J].Neural Computation,1999,11(2): 409-433.
  • 4[3]A Hyvarinen,et al.A fast fixed-point algorithm for independent analysis [J].Neural Computation,1997,9: 1483-1492.
  • 5[4]Linsker R.An application of the principle of maximum information preservation to linear systems [A].Touretzky D S.Advances in Neural Information Processing System 1 [C].Morgan-Kauffman,1989.
  • 6[5]Amari.Natural gradient works efficiently in learning [J].Neural Computation,1998,10: 251-276.
  • 7Aapo Hyvarinen.Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Trans.on Neural Networks (S1045-9227).1999,10(3):626-634.
  • 8S Haykin.Unsupervised Adaptive Filtering,Vol.2:Blind Deconvolution[M].Wiley,2000.
  • 9A Nandi.Blind Estimation Using Higher-Order Statistics[M].Kluwer,1999.
  • 10S I Amari,A Cichocki.Adaptive blind signal processing-neural network approaches[J].Proceedings of the IEEE (S0018-9219).1998,86(10):2026-2048.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部