期刊文献+

基于支持向量机的自适应卡尔曼滤波技术研究 被引量:12

Study of support vector machine based adaptive Kalman filtering
下载PDF
导出
摘要 针对卡尔曼滤波(KF)中噪声的统计特性与实际不符时滤波精度严重降低甚至引起滤波器发散的问题,提出一种基于支持向量机的自适应卡尔曼滤波算法(SVMAKF).根据新息理论方差与实际方差的比值,应用支持向量机产生自适应因子对卡尔曼滤波器的噪声方差阵进行在线修正,使噪声方差阵能够根据实际噪声的变化得到调整.通过对雷达目标跟踪系统的仿真表明,该算法对噪声有较强的自适应性,能够提高滤波精度和滤波器的鲁棒性. As the accuracy will decrease or even divergence problems will occur while the theoretical statistical behavior of the Kalman filtering and its actual behavior do not agree, a new self-adaptive Kalman filtering, support vector machines adaptive Kalman filtering (SVMAKF), is presented. In order to tune the noise covariance of the Kalman filtering on line, SVM is employed to generate the adaptive factor, according to the ratio of the theoretical covariance of the innovation sequence to its actual covariance. Simulation on target tracking shows that SVMAKF can increase the estimation accuracy and the robustness of the Kalman filtering remarkably, compared with the traditional Kalman filtering.
出处 《控制与决策》 EI CSCD 北大核心 2008年第8期949-952,共4页 Control and Decision
基金 "十一五"国防预研项目(51309060401)
关键词 自适应卡尔曼滤波 新息序列 支持向量机 目标跟踪 Self-adaptive Kalman filtering Innovation sequence Support vector machine Target tracking
  • 相关文献

参考文献14

  • 1Paul Zarchan, Howard Musoff. Fundamentals of Kalman filtering: A practical approach[M]. Virginia:Published by the American Institute of Aeronautics and Astronautics, 2005.
  • 2秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004.
  • 3Liu S. An adaptive Kalman filter for dynamic estimation of harmonic signals[C]. The 8th Int Conf on Harmonics and Quality of Power. Greece: Jointly Organized by IEEE/PES and NTUA, 1998: 636-640.
  • 4Tsai C, Kura L. An adaptive robustizing approach to Kalman filtering[J]. Automatic, 1983, 19(3) : 279-290.
  • 5Escamilla-Ambrosio P J, Mort N. Multisensor data fusion architecture based on adaptive Kalman filter and fuzzy logic performance assessment[C]. The 5th Int Conf on Information Fusion. Sunnyvale: Int Society of Information Fusion, 2002: 1542-1549.
  • 6Sasiadek J Z, Wang Q, Zeremba M B. Fuzzy adaptive kalman filtering for INS/GPS data fusion[C]. Proe of the 15th IEEE Int Symposium on Intelligent Control. Patras, 2000: 181-186.
  • 7Vapnik V N. Statistical learning theory [M]. New York: John Wiley & Sons, 1998.
  • 8Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 2000.
  • 9Nello Cristianini, John Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge University Press, 2000.
  • 10Burges C J. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 127-167.

共引文献75

同被引文献139

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部