期刊文献+

图像检索中语义映射方法综述 被引量:36

A Survey of Semantic Mapping in Image Retrieval
下载PDF
导出
摘要 "语义鸿沟"已成为基于内容图像检索的瓶颈,解决这个问题需要建立从图像的低层特征到高层语义的映射.对当前语义映射研究进行了综述,首先给出一个结合语义的图像检索框架,并分析了图像内容的层次模型及图像语义的表示方法;然后根据算法的特点,将现有的语义映射方法和技术分为4大类,重点阐述了各类方法提出的思路、模型,并讨论各自的优势和局限性;最后以图像检索实际应用的需要为依据,提出在图像语义检索相关领域的重要课题和研究方向. Semantic gap has become a bottleneck of content-based image retrieval. In order to bridge the gap and improve retrieval accuracy, a map from lower-level visual features to high-level semantics should be formulated. This paper provides a comprehensive survey on semantic mapping. Firstly, an image retrieval framework integrated with high-level semantics is presented. Secondly, image semantic description is introduced in two aspects image content level-models and semantic representations. Thirdly, as the emphasis of this paper, semantic mapping approaches and techniques are investigated by classifying them into four main categories in terms of their characteristics. Various ideas and models proposed in these approaches are analyzed. In addition, advantages and limitations of each category are discussed. Finally, based on the state-of-the-art technology and the demand from real-world applications, several important issues related to semantic image retrieval are identified and some promising research directions are suggested.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第8期1085-1096,共12页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重点项目(60435010) 国家“八六三”高技术研究发展计划(2006AA01Z128) 国家“九七三”重点基础研究发展规划项目(2007CB311004)
关键词 语义映射 基于内容图像检索 语义概念 图像标注 支持向量机 相关反馈 semantic mapping content-based image retrieval semantic concept image annotation support vector machine relevance feedback
  • 相关文献

参考文献78

  • 1Rui Y, Huang T S, Chang S F. Image retrieval:current techniques, promising directions, and open issues [J]. Journal of Visual Communication and Image Representation, 1999, 10(1): 39-62
  • 2Gudivada V N, Raghavan V V. Content-based image retrieval systems[J]. Computer, 1995, 28(9): 18-22
  • 3Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380
  • 4Datta R, Li J, Wang J Z. Content based image retrieval approaches and trends of the new age [C] //Proceedings of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval, Singapore, 2005:253-262
  • 5Lew M S, Sebe N, Djeraba C, et al. Content-based multimedia information retrieval: state of the art and challenges [J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2006, 2(1): 1-19
  • 6Flickner M, Sawhney H, Niblack W, et al. Query by image and video content: the QBIC system [J]. Computer, 1995, 28(9):23-32
  • 7Gupta A, Jain R. Visual information retrieval [J]. Communications of the ACM, 1997, 40(5) :71-79
  • 8Ma W Y, Manjunath B S. NeTra: a toolbox for navigating large image databases [J]. Multimedia Systems, 1999, 7 (3) : 184-198
  • 9Wang J Z, Li J, Wiederhold G. SIMPLicity:semantics-sensitive integrated matching for picture libraries [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(9):947-963
  • 10Carson C, Belongle S, Greenspan H, et al. Blobworld: image segmentation using expectation maximization and its application to image querying [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (8): 1026-1038

二级参考文献93

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2梁爽,孙正兴.面向草图检索的相关反馈方法[J].计算机辅助设计与图形学学报,2006,18(11):1753-1757. 被引量:5
  • 3Arnold W M, Semeulders, et al. Content- Based Image Retrieval at the End of Early Years. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349 - 1380.
  • 4Colombo C, Bimbo A D, Plata P. Semantic in Visual Information Retrieval. IEEE Multimedia, 1999, 6(3): 38-63.
  • 5Wang Shangfei, Chen Enhong, Wang Xufa. Image Retrieval Based on an Artificial Emotion Model. In: Zhang Liming, Gu Fanji, eds. Proc of 8th International Conference on Neural Information Processing ( ICONIP - 2001 ). Shanghai: Fudan University Press,2001,Ⅲ: 725 - 729.
  • 6VapnikVN 著 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,1998.85-124.
  • 7StrongmmaKT 著 张燕云 译.情绪心理学[M].沈阳:辽宁人民出版社,1987.307-343.
  • 8Gao Y Y,Proc ICASSP,2000年,4卷,2003页
  • 9罗--,计算机学报,2000年,23卷,12期,1313页
  • 10Hong D Z,SPIE 3656,1999年,581页

共引文献147

同被引文献418

引证文献36

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部