期刊文献+

一般相关噪声下线性系统定区间平滑估计算法

A Fixed-Interval Smoothing Algorithm for Linear Systems with General Correlated Noises
下载PDF
导出
摘要 针对机动目标跟踪中固定区间平滑估计算法对噪声相关性考虑不完全的问题,提出了一种具有一般相关过程噪声与量测噪声的离散线性系统最优固定区间平滑估计算法.该算法通过将固定区间内全部量测进行集中式扩维,并对误差传递进行分析,从而精确给出了误差间的相关性,在线性无偏最小方差意义下对系统状态进行递推估计.与不考虑相关性的卡尔曼平滑算法以及仅考虑量测相关性的正、逆向滤波融合平滑估计算法相比,新算法在噪声的高斯分布假设下是最优的,且随噪声相关性增强其优越性越明显.仿真结果表明,在相关系数为0.36时,新算法的位置跟踪均方根误差比不考虑相关性和仅考虑量测相关性的平滑估计算法可降低38%. In view of on the incomplete consideration of noise correlation in the fixed-interval smoothing algorithm for maneuvering target tracking, an optimal fixed-interval smoothing algo- rithm is proposed for discrete-time linear system with general correlated measurement noises and process noises. Based on the linear unbiased minimum variance estimation theory, the new algorithm estimates the system states recursively by using the centralized expanding-dimension method with all measurements in the fixed interval, and calculates the correlations between the errors precisely using analysis of the error transfer property. Compared with the uncorrelated Kalman smoothing algorithm and the forward-backward filtering based fusion-smoothing algorithm in which only the measurement noises correlation is considered, the new algorithm is the best one under the hypothesis of Gauss distribution. Bigger the correlation coefficient is, more obvious the superiority of the new algorithm is. Simulation results show that when the correlation coefficient is 0.86, the root mean square error of position tracking of the new algorithm is decreased 38% or more compared with the uncorrelated and measurement correlated Kalman smoothing algorithm.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第8期954-957,1039,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60602025)
关键词 目标跟踪 相关噪声 定区间平滑 target tracking correlated noise fixed-interval smoothing
  • 相关文献

参考文献9

  • 1MIRKIN L, TADMDR G. Fixed-lag smoothing as a constrained version of the fixed-interval case [C]// Proceedings of the 2004 American Control Conference. Boston, Massachusetts, USA: American Automatic Control Council, 2004: 4165-4170.
  • 2DONALD C F, JAMES E P. The optimum linear smoother as a combination of two optimum linear filters[J]. IEEE Transactions on Automatic Control, 1969, 14(8):387-390.
  • 3SUN Shuli, MA Jing. Optimal filtering and smoothing for discrete-time stochastic singular systems [J]. Signal Processing, 2007, 87 (1):189-201.
  • 4NAKAMORI S, HERMOSO-CARAZO A, LIN ARES-PEREZ J. A general smoothing equation for signal estimation using randomly delayed observations in the correlated signal-noise case [J]. Digital Signal Processing, 2006 (16) : 369-388.
  • 5HERMOSO-CARAZO A, LINARES-PEREZ J. Linear smoothing for discrete-time systems in the presence of correlated disturbances and uncertain observations [J]. IEEE Transactions on Automatic Control, 1995, 40(8) : 1486-1488.
  • 6邓自立,石莹,孙书利,许燕.快速次优固定区间Wiener平滑器算法[J].控制理论与应用,2004,21(2):275-278. 被引量:2
  • 7韩崇昭,王洁,李晓榕.一般相关量测噪声下线性系统的平滑估计算法[J].西安交通大学学报,2000,34(9):1-4. 被引量:4
  • 8左东广,韩崇昭,魏瑞轩,郑林.相关噪声情况下航迹的关联及融合算法[J].电子学报,2002,30(8):1117-1120. 被引量:12
  • 9LI Xiaorong, ZHU Yunmin, WANG Jie, et al. Opti mal linear estimation fusion, part Ⅰ: unified fusion rules [J]. IEEE Transactions on Information Theory, 2003, 49(9): 2192-2208.

二级参考文献12

  • 1李树英,随机系统的滤波与控制,1991年
  • 2韩崇昭,随机系统理论,1987年
  • 3Y Bar-Shalom,Xiao-Rong Li.Multitarget-Multisensor Tracking:Principles and Tec hniques [M].Storrs:CTYBS Publishing,1995:429-468.
  • 4Carl G Looney,Yaakov L Varol,Sheng Tang.Multisensor multitarget tracking with ce ntral-to-local feedback [A].Proc.2000 International Conf.On Information Fusi on [C].Paris,France:2000:Wed1-1.
  • 5Chee-Yee Chong,Shozo Mori.Architectures and Algorithms for Track Association an d Fusion [A].Proc.1999 International Conf.On Information Fusion [C].Sunnyval e,California:C-134.
  • 6Saha R K.Trac-to-Track fusion with dissimilar sensors [J].IEEE Transactions on Aerospace and Electronic Systems.1996,32(3):1021-1029.
  • 7A T Alouani,T R Rice,R E Helmick.On sensor track fusion [A].Proceedings of the American Control Conference [C].Baltimore,USA:1994:1042-1046.
  • 8Y Bar-Shalom.On the track-to-track correlation problem [J].IEEE Transaction s on Automatic Contro,AC-26(2):571-572.
  • 9Y Bar-Shalom.The effect of the common process noise on the two-sensor fused-t rack covariance [J].IEEE Transactions on Aerospace and Electronic Systems.1986 ,AES-22(6):803-805.
  • 10KAILATH T, SAYYED A H, HASSIBI B. Linear Estimation [M].Englewood Cliffs, NJ: Printice-Hall, 2000.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部