期刊文献+

视觉特征方向流邻域加权PCM的SAR图像分割 被引量:2

SAR image segmentation using weighted PCM clustering based on direction flow field with visual character
下载PDF
导出
摘要 应用聚类方法对合成孔径雷达(SAR)图像进行分割时,受SAR图像斑点噪声的影响,在聚类过程中应当既要考虑聚类原型的空间自适应性,又要考虑像素间强相关性,这就要求聚类隶属度与空间信息的有效结合.针对此问题提出了基于方向流场构建自适应邻域空间加权可能性c-均值聚类(PCM)算法,通过可操纵小波变换和视觉特征预测编码模型建立方向流场,用基于方向流场的Markov随机场(MRF)描述当前像素与其邻域像素间的相互关系,在像素的聚类隶属度估计中直接引入这种邻域信息,使聚类隶属度得到有效修正.实验表明这种方法在抑制噪声的同时可以保留图像的细节信息,对SAR图像有较好的分割结果. Because of the influence of the speckle in the synthetic aperture radar (SAR) image, both the statistical dependencies among neighboring pixels and spatial adaptation of the clustering prototype should be considered during the process of SAR image segmentation. So it is required that the membership and spatial information should be combined. The adaptive spatial neighbor weighted possibilistic e-means (PCM) clustering based on the direction flow field is proposed in the paper. The direction flow field is constructed by combining the predictive coding model with the visual character and steerable wavelet transform. The relationship between the pixel under test and the pixels of neighborhood is described through Markov random fields (MRF) based on the direction flow field. Because the context information is considered, membership is adjusted efficiently. The experimental results on real SAR images demonstrate the merit of the proposed method, especially in despeckling and the preservation of details within a SAR image.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第4期624-631,共8页 Journal of Xidian University
基金 国家自然科学基金资助(6067309760703109) 国家部委科技项目资助(A1420060172 51307040103)
关键词 合成孔径雷达图像分割 可能性c-均值聚类 可操纵小波变换 方向流场 synthetic aperture radar (SAR) image segmentation possibilistic c-means clustering steerable wavelet transform direction flow field
  • 相关文献

参考文献15

  • 1Krishnapuram R, Keller J. A Possibilistic Approach to Clustering[J].IEEE Trans on Fuzzy Systems, 1993, 1 (2):98-110.
  • 2Krishnapuram R, Keller J. Correspondence 'The Possibilistic C-Means Algorithm': Insights and Recommendations[J]. IEEE Trans on Fuzzy Systems, 1996, 4(3): 385-393.
  • 3Chen Songcan, Zhang Daoqiang. Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernelinduced Distance Measure[J].IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(4): 1 907-1 916.
  • 4Liew A W-C, Yan Hong, Law N F. Image Segmentation Based on Adaptive Cluster Prototype Estimation[J]. IEEE Trans on Fuzzy Systems, 2005, 13(4): 444-453.
  • 5冯衍秋,陈武凡,梁斌,林亚忠.基于Gibbs随机场与模糊C均值聚类的图像分割新算法[J].电子学报,2004,32(4):645-647. 被引量:35
  • 6Tolias Y A, Panas S M. Image Segmentation by a Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Functions[J]. IEEE Trans on Systems, Man, and Cybernetics-part a: Systems and Humans, 1998, 28(3):359-369.
  • 7Tolias Y A, Panas S M. On Applying Spatial Constraints in Fuzzy Image Clustering Using a Fuzzy Rule-based System [J]. IEEE Signal Processing Letters, 1998, 5(10): 245-247.
  • 8Sowmya B, Bhattacharya S. Colour Image Segmentation Using Fuzzy Clustering Techniques[C]//IEEE Indicon 2005 Conference. Chennai:IEEE, 2005:41-45.
  • 9Dulyakarn P, Rangsaseri Y. Fuzzy c-means Clustering Using Spatial Information with Application to Remote Sensing [C]//22nd Asian Conference on Remote Sensing. Singapore: Centre for Remote Imaging, Sensing & Processing, 2001: 5-9.
  • 10Li S Z. Markov Random Field Modeling in Image Analysis[M]. 2nd Edition. Berlin: Springer-Verlag Press, 2001.

二级参考文献12

  • 1叶秀清,顾伟康,肖强.快速模糊分割算法[J].模式识别与人工智能,1996,9(1):66-70. 被引量:27
  • 2Tsai D M,Chen Y H.A fast histogram-clustering approach for multi-level thresholding [J].Pattern Recognition Letters,1992,13:245-252.
  • 3Cheng H D,Chen J R,Li J G.Thresholding selection based on fuzzy C-partition entropy arrpoach [J].Pattern Recognition,1998,31(7):857-870.
  • 4Pornphan DULYAKARN,Yuttapong RANGSASERI.Fuzzy C-Means Clustering Using Spatial Information with Application to Remote Sensing [A].22nd Asian Conference on Remote Sensing [C].Singapore,2001.11.
  • 5Y Zhang,M Brady,S Smith.Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm [J].IEEE Trans.Medical Imaging,2001,20(1):45-57.
  • 6Stan Z Li.Markov Random Field Modeling in Image Analysis [M].Tokyo,Japan,Springer,2001,ISBN 4-431-70309-8.
  • 7Dzung L.Pham,Jerry L.Prince.Adaptive Fuzzy Segmentation of Magnetic Resonance Images [J].IEEE Trans.On Medical Imaging,1999,18(9):737-752.
  • 8丁震,胡钟山,杨静宇,唐振民,邬永革.一种适用于灰度图像分割的快速FCM算法[J].模式识别与人工智能,1997,10(2):133-139. 被引量:20
  • 9胡钟山,丁震,杨静宇,唐振民,邬永革.一种改进的 Fuzzy c-means 聚类算法[J].南京理工大学学报,1997,21(4):337-340. 被引量:4
  • 10薛景浩,章毓晋,林行刚.基于特征散度的图像FCM聚类分割[J].模式识别与人工智能,1998,11(4):462-467. 被引量:15

共引文献34

同被引文献14

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部