期刊文献+

多视觉信息融合的内河航道智能监控系统 被引量:17

An Intelligent Surveillance System for Freshwater Sea-route Based on Multi-vision Information Fusion
下载PDF
导出
摘要 探讨了利用动态图像理解技术对内河船舶的交通状况进行监控,采用多视觉传感器数据融合技术对跟踪的船舶对象进行特写抓拍;通过对交通流信息的实时采集、处理、跟踪与分析,得到内河航道中交通状态信息,如船舶流量、船舶速度、通航密度等重要基础信息。通过对抓拍到的船舶对象图像进行船名牌识别和吃水深度的估算,得到被跟踪船舶对象的基本属性数据和载重量等重要内河管理基础信息,为航运管理部门进行水域交通管理和交通规划提供决策依据。此外,通过自定义感兴趣监控区域以及监控对象来减少图像处理时间,提高系统实时处理能力及鲁棒性。实验结果表明,系统可以实现对船舶稳定跟踪,并对船舶进行特写抓拍和识别,识别准确率高,最终实现吨位估算。 In this paper we discussed about monitoring the traffic of freshwater sea-route by mean of dynamic image understanding technology, in which multi-vision-sensor data amalgamation technology is used to capture the concerned areas of tracked ships. With real-time collecting, processing, tracking, and analyzing the video flow, some important traffic information including speed, number of ships, and the density of the ship in route are automatically obtained. The captured ship images are analyzed to determine license plates and load of the tracked ships and to obtain some basic data useful for river management department' s decision-making for management and planning. In addition, the surveillance area and object can be defined by users so that the system processing time is reduced while the ability to real-time processing, reliability, and robustness are improved. Experimental results show that the system can realize tracking the ships stably, can capture and recognise the specified part of the ship. The accuracy rate of recognition is high, at last the system realizes calculating the tonnage.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第8期1608-1616,共9页 Journal of Image and Graphics
基金 浙江省科技厅重大科技项目(2006C11202) 国家自然科学基金项目(60673177)
关键词 视频智能监控 船舶对象跟踪 动态图像理解 视频数据融合 船舶流量统计算法 video intelligence surveillance, ship tracking, dynamic image understanding, video data amalgamation, statistic of the number of ships
  • 相关文献

参考文献11

  • 1范新南,徐立中,苏丽媛.基于联邦滤波技术的吨位智能测量系统[J].计算机仿真,2006,23(6):127-129. 被引量:2
  • 2王伟,李志鹏,刘允才.交通信息实时视频检测系统的实现[J].微型电脑应用,2006,22(9):25-28. 被引量:4
  • 3Harini Veeraraghavan, Nathaniel Bird, Stefan Atev, et al. Classifiers for driver activity monitoring [ J]. Transportation Research Part C: Emerging Technologies,2007, 1 ( 15 ) :51 - 67.
  • 4卢湖川,朱矿军.基于视频的交通流参数检测[J].城市交通,2005,3(2):70-74. 被引量:9
  • 5Mubarak Shah, Guest Introduction: The changing shape of computer vision in the twenty-first century [ J ]. International Journal of Computer Vision, 2002,2(50) :103 - 110.
  • 6Kojima A,Tamura T, Fukunaga K. Title : Natural language description of human activities from video images based on concept hierarchy of actions[ J]. International Journal of Computer Vision,2002,2 (50) : 171 - 184.
  • 7Makris D, Ellis T J. Learning semantic scene models from observing activity in visual surveillance[J]. IEEE Transactions on Systems Man and Cybernetics-Part B, 2005,3 (35) : 397 - 408.
  • 8Hu Wei-ming,Tan Tie-niu. A Survey on Visual Surveillance of Object Motion and Behaviors [ J ]. IEEE Transactions on applications and reviewss-Part C ,2004,3 ( 35 ) :334- 352.
  • 9Pun T. Entropic thresholding: A new approach [ J ]. Computer Graphics and Image Processing, 1981, 3(16) : 210-239.
  • 10Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[ A]. In: IEEE International Proceeding on Computer Vision and Pattern Recognition[ C ], Hilton Head Island, SC,USA, 2000, (2) :142 - 149.

二级参考文献12

  • 1[1]M.Fathy, M.Y. Siyal. A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters [J]. IEEE Tran. On Vehicular Technology, 1998, 47: 1342~1349
  • 2[3]Mei yu, Gangyi Jiang, Bokang Yu. An Integrative Method for Video Based Traffic Parameter Extraction in ITS[J]. Circuits and Systems, 2000, 12: 136~139
  • 3Sun Shuli,Deng Zili,Multi-sensor optimal information fusion Kalman filter[J].Automatica,2004,40(6):1017-1023.
  • 4苏光人.微机图像处理系统[M].清华大学山版社,2000年
  • 5Texas Instruments, TMS320DM642 Video/Imaging Fixed-Point Digital Signal Processor Data Manual[z].
  • 6Panos, G. Michalopoulos, Vehicle Detection Video Through Image Processing = The Autoscope System[J],IEEE Transaction on Vehicular technology, Vol 40,N01,Feb 1991
  • 7宋颖华.交通检测技术及其发展[J].公路,2000,45(9):34-37. 被引量:28
  • 8魏武,张起森,王明俊,黄中祥.基于计算机视觉和图像处理的交通参数检测[J].信息与控制,2001,30(3):257-261. 被引量:45
  • 9盛三元,王建华.联合卡尔曼滤波在多传感器信息融合中的应用[J].雷达与对抗,2002,22(1):27-33. 被引量:21
  • 10郁梅,蒋刚毅,贺赛龙.基于路面标记的车辆检测和计数[J].仪器仪表学报,2002,23(4):386-390. 被引量:26

共引文献9

同被引文献116

引证文献17

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部