期刊文献+

基于改进的PCM支持向量描述多类分类器 被引量:2

Support Vector Description Multi-class Classifier Based on Improved PCM
下载PDF
导出
摘要 基于支持向量数据描述和改进的可能性c-均值聚类算法,提出了一种模糊的多类分类学习机。首先通过一个改进的PCM算法来计算每个样本对于每类的权值矩阵,该权值也反映了该样本对某类的重要程度;然后将该权值矩阵应用到支持向量数据描述方法中,并对样本进行训练;最后给出了一个针对多类分类的分类规则(函数),并从理论上证明该分类规则满足贝叶斯优化决策理论。通过对比实验分析,本文提出的算法在分类精度和训练时间上都有较大的改善。 In this paper, a novel fuzzy classifier for multi-classlfication problems, based on Support Vector Data Description (SVDD) and improved PCM, is proposed. The proposed method is the robust version of SVDD by assigning a weight to each data point, which represents fuzzy membership degree of the cluster computed by the improved PCM method. Accordingly, this paper presents the multi classification algorithm based on the robust weighted SVDD, and gives the simple classification rule. Experimental results show that the proposed method can reduce the effect of outliers and yield higher classification rate.
出处 《计算机科学》 CSCD 北大核心 2008年第8期149-153,共5页 Computer Science
基金 国家科技型中小企业技术创新基金(05C26212120357)
关键词 支持向量数据描述 可能性c-均值聚类 最小包围球 分类器 支持向量机 Support vector data description, Possibilistic e-means clustering, Minimum enclosing sphere, Classifier, SVM
  • 相关文献

参考文献21

  • 1Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAG's for multiclass classification. Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2000 : 547-553.
  • 2Hsu C W, Lin C J. A comparison of methods for multi class support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2) :415-425.
  • 3Weston J, Watkins C. Multi-class support vector machines. Technical Report, SD2TR298204. Department of Computer Science, Royal Holloway University of London, 1998.
  • 4Zhang Y,Chi Z X, Liu X D, et al. A novel fuzzy compensation multi class support vector machines. Applied Intelligence, 2007, 27(1):21-28.
  • 5Zhu M L,Chen S F, Liu X D. Sphere-structured support vector machines for multi-class pattern recognition. Lecture Notes inComputer Science, 2003,2639:589-593.
  • 6Wang J, Neskovic P, Cooper L N. Bayes classification based on minimum bounding spheres. Neurocomputing, 2007,70 : 801-808.
  • 7Scholkopf B,Burges C, Vapnik V N. Extracting support data for a given task//Proceedings of First International Conference on Knowledge Discovery and Data Mining. 1995:252-257.
  • 8Scholkopf B,Platt J,Shawe-Taylor J, et al. Estimating the support of a high dimensional distribution. Neural Computation, 2001,13 (7): 1443-1471.
  • 9Tax D,Duin R. Support vector domain description. Pattern Recognition Letter, 1999,20 : 1191-1199.
  • 10Tax D,Duin R. Support vector data description. Machine Learning, 2004,54 :45-66.

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部