期刊文献+

基于漏洞扫描的SVM网络入侵检测研究

Research on SVM detection of network intrusion based on vulnerability scanning
下载PDF
导出
摘要 入侵检测技术是网络安全的重要组成部分,是网络集成解决方案中的重要模块。一般的入侵检测只能检测出一般入侵行为,不能对已入侵及新的变形入侵做出有效判断。基于支持向量机(SVM)对网络的安全漏洞扫描构建的网络入侵检测,减少了有限的时间训练样本数,能有效提高入侵检测的分类性能,以更短响应时间做出更准确的检测判断。 The intrusion detection technology is an important part of network security and a fundamental module in consisting the integration security. The generic method of intrusion detection can detect the generic intrusion, but it is difficult to obtain the deformed intrusion and intruded action. Intrusion detection technology is dealt with based on SVM method with exposure in network security can actively reduce the number of the sample in the limited time, improve the ability of the classification in intrusion detection efficiently, and also can show the accurate intrusion detection in the few time.
作者 杨杰 余彬
出处 《计算机工程与设计》 CSCD 北大核心 2008年第15期3856-3857,4089,共3页 Computer Engineering and Design
关键词 漏洞扫描 向量机 网络入侵 网络安全 模型 vulnerability scanning SVM network intrusion network security model
  • 相关文献

参考文献8

  • 1Wang Yong,Yang Huihua, Wang Xingyu, et al. Distributed intrusion detection system based on data fusion method[C]. The 5th World Congress on Intelligent Control and Automation. New Jersey: IEEE Press, 2004:4331-4334.
  • 2Foody G M, Mathur A A. Relative evaluation of multiclass image classification by support vector mathines[J]. IEEE Trans Geoscience and Remote Sensing, 2004,42:1335-1343.
  • 3Nello Critianini, John Shawe Taylor. An introduction to support machines[M]. House of Electronics Industry, 2000.
  • 4Brown M, Lewis H G, Gunn S R. Linear spectral mixture models and support vector machines for remote sensing[J].IEEE Trans Geoscience and Remote Sensing,2000,38:2346-2360.
  • 5Kenthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kemel[J].Neural Computation,2003,15 (7):1667-1689.
  • 6Hall L O, Ozyurt B, Bezkek J C. Clustering with a genetically optimized approach[J].IEEE Trans on Evolutionary Computation, 1999,3 (2): 103-112.
  • 7Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.
  • 8肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13

二级参考文献10

  • 1Denning D E. An intrusion detection model[J]. IEEE Transactions on Software Engineering, 1987,13(2):222-232
  • 2Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag,1995.
  • 3Hsu C W, Lin C J. A Comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 110-119.
  • 4Wilson D R, Martinez T R. Improved heterogeneous distance functions[J]. Journal of Artificial Intelligence Research, 1997(6): 1-34.
  • 5Amari S, Wu S. Improving support vector machine classifiers by modifying kernel functions[J]. Neural Networks, 1999, 12(6):783-789.
  • 6School of information and computer science university of California. KDD cup 1999 data[EB/OL]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup.html,1999-10-28/2004-3-21.
  • 7Lee W, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models[A]. The 1999 IEEE Symposium on Security and Privacy, Berkeley, USA, 1999.
  • 8Chang C C, Lin C J. LIBSVM-a library for support vector machines[EB/OL]. http://www.csie.ntu.edu.tw/-cjlin/libsvm/, 2004-03-31/2004-05-25.
  • 9Ambwani T. Multi-class support vector machine implementation to intrusion detection[A]. The 2003 IEEE International Joint Conference on Neural Networks, Portland, USA, 2003.
  • 10李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部