摘要
在数据挖掘的过程中,经常需要将来自不同平台、不同构架的数据进行集成分析。对此引入由联机分析处理(OLAP)和数据挖掘(DM)相结合的联机分析挖掘(OLAM)模式来抽取隐藏在相关数据集中的知识。通过利用组件、中间件技术,OLAM可以将来源不同的数据整合到目标数据仓库中,然后根据不同用户的需求,使用数据挖掘算法在不同的OLAP维度层次上进行挖掘,得到粒度不同的知识。最后利用决策树算法进行了例示说明。
In practice, the data from different systems and frameworks must be integrated together to carry on a comprehensive research and analysis. This surely will raise a new demand for data integration. The online analytical mining (OLAM) is introduced, which combines the online analytical processing (OLAP) and data mining (DM), to discover the knowledge hidden in the relative datasets. Through groupware and intermediary, OLAM allows users to integrate the datasets from different resources into the target data warehouse. Then, some algorithm is used to extract the knowledge with different granularity for different users according to the different dimensional levels of OLAP. Finally, using decision tree algorithm, the process is illustrated by an example.
出处
《计算机工程与设计》
CSCD
北大核心
2008年第15期3941-3943,4099,共4页
Computer Engineering and Design
基金
国家自然科学基金项目(70601013)
关键词
数据挖掘
联机分析挖掘
数据仓库
维度
决策树
data mining
on-line analytical mining
data warehouse
dimension
decision tree