期刊文献+

基于遗传算法的感知无线电染色体遗传研究

Research on chromosome heredity of cognitive radio based on GA
下载PDF
导出
摘要 源于生物进化原理的遗传算法,可以利用优胜劣汰遗传机制演化得到系统最优参数。通过对感知循环、遗传算法进行讨论,针对感知无线电提出了基于遗传算法的感知无线电基因与感知无线电染色体。用不同的适应率要求对感知无线电遗传算法案例进行求解,并对案例生成的不同解进行了讨论。通过对案例的研究,分析了Rieser基于遗传算法的感知无线电引擎模型的局限,提出了今后研究的思路。 Based on biologic evolution principle, genetic algorithm can get the system best parameters by dominant character. The cognitive cycle and genetic algorithm are introduced. Based on genetic algorithm, the genes and chromosomes of cognitive are proposed. Under different fitness rules, the cases of biologically inspired cognitive radio are studied. The limitation of Rieser' s CR mode based on GA is analyzed. The proposal for improvement is studied.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第15期3980-3983,共4页 Computer Engineering and Design
基金 贵州省国际科技合作重点基金项目(黔科合外G字(2007)400109)
关键词 感知无线电 遗传算法 染色体 基因 决策机 cognitive radio genetic algorithms chromosome gene decision maker
  • 相关文献

参考文献7

  • 1Mitola J III. Cognitive radio: An integrated agent architecture for software defined radio[D].Stockholm,Sweden:Royal Institute of Technology, 2000.
  • 2Rieser C J, Rondeau T W, Bostian C W, et al. Cognitive radio test bed: Further details and testing of a distributed genetic algorithm based cognitive engine for programmable radios[C]. CA, USA: IEEE MILCOM. Monterey, 2004.
  • 3Negnevitsky M. Artifical intelligence: A guide to intelligent systems[M].New York: Addison-Wesley Pearson Education Limited, 2002.
  • 4James O'Daniell Neel. Analysis and design of cognitive radio network sand distributed radio resource management algorithms [D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2006.
  • 5Christian James Rieser, Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[D].Blacksburg, VA: Virginia Polytechnic Institute and State University, 2004.
  • 6郭嫄嫄,蔡之华.基于遗传算法的预测规则发现研究[J].计算机工程与设计,2004,25(10):1669-1672. 被引量:6
  • 7陈曦,林涛,唐贤瑛.遗传算法的参数设计与性能研究[J].计算机工程与设计,2004,25(8):1309-1310. 被引量:18

二级参考文献17

  • 1HANJia-wei KamberMicheline 范明.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 2Freitas A A. A survey of evolutionary algorithms for data mining and knowledge discovery[A]. To appear in: A. Ghosh, Tsutsui S.Advances in evolutionary computation [C]. Sprin-ger-Verlag,2002.
  • 3Freitas A A. On objective measures of rule surprisingness[C].Lecture Notes in Artificial Intelligence 1510: Principles of Data Mining and Knowledge Discovery(Proc.2nd European Symp,PKDD-98,Nantes,France), 1-9.Springer-Verlag, 1998.
  • 4Freitas A A. A genetic algorithm for generalized rule induction [A]. In:R Roy. Advances in soft computing-engineering design and manufacturing[C]. Springer-Verlag, 1999.340-353.
  • 5Noda E, Freitas A A, Lopes H S. Discovering interesting prediction rules with a genetic algorithm[C]. Washington D C, USA:Proc Conference on Evolutionary Computation (CEC-99),1999.1322-1329.
  • 6Hand D J. Construction and assessment of classification rules [M].1997.
  • 7Romao W, Freitas A A ,Pacheco R C S. A genetic algorithm for discovering interesting fuzzy prediction rules: Applications to science and technology data [C]. New York: Proc Genetic and Evolutionary Computation Conf (GECCO-2002), 2000.
  • 8张铃,ahu.edu.cn,张钹.遗传算法机理的研究[J].软件学报,2000,11(7):945-952. 被引量:126
  • 9王征应,石冰心.基于启发式遗传算法的QoS组播路由问题求解[J].计算机学报,2001,24(1):55-61. 被引量:82
  • 10杨启文,蒋静坪,张国宏.遗传算法优化速度的改进[J].软件学报,2001,12(2):270-275. 被引量:78

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部