期刊文献+

量子卷积码的编译码方法 被引量:6

Encoding and decoding of quantum convolutional codes
原文传递
导出
摘要 对于量子卷积码理论的研究旨在保护长距离通信中的量子信息序列.定义了量子态的多项式表示形式,根据Calderbank-Shor-Steane(CSS)型量子码的构造方法,给出了CSS型量子卷积码的一种新的编译码方法,描述了编译码网络.该方法将码字基态变换为信息多项式与生成多项式的乘积,然后用量子态上的多项式乘法操作实现编译码网络.最后借鉴经典卷积码的译码思想,给出了具有线性复杂度的量子Viterbi算法. The research on quantum convolutional codes is aimed at protecting a flow of information over long distance communications.The polynomial representation of a quantum state is defined.Based on the Calderbank-Shor-Steane(CSS)-type construction of quantum codes,a new method for encoding and decoding of CSS-type quantum convolutional codes is presented and corresponding networks are described.The basis state of the code is transformed into the product of an information polynomial by the generator polynomial.Then networks can be realized by operations of polynomial multiplication.Finally,inspired by classical convolutional decoding idea,a quantum Viterbi algorithm with linear complexity is put forward.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第8期4695-4699,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60496316 60472098)资助的课题~~
关键词 量子信息 量子卷积码 编译码 纠错算法 quantum information,quantum convolutional codes,encoding and decoding,correcting algorithm
  • 相关文献

参考文献7

二级参考文献26

  • 1宋克慧.利用Λ型原子与双模腔场的相互作用进行量子信息处理[J].物理学报,2005,54(10):4730-4735. 被引量:12
  • 2Bennet C H,Divincenzo D P,Smolin J A,Wotters W K 1996 Phys.Rev.A 54 3824
  • 3Shor P W 1995 Phys.Rev.A 52 2493
  • 4Steane A M 1996 Phys.Rev.Lett.77 793
  • 5Laflamme R,Miquel C,Paz J P,Zurek W 1996 Phys.Rev.Lett.77 198
  • 6Calderbank A R,Shor P W 1996 Phys.Rev.A 54 1098
  • 7Steane A M 1996 Proc.Roy.Soc.London Ser.A 452 2551
  • 8Gottesman D 1996 Phys.Rev.A 54 1862
  • 9Calderbank A R,Rains E M,Shor P W,Sloane N J A 1997 Phys.Rev.Lett.78 405
  • 10Ashikhmin A,Litsyn S,Tsfasman M 2001 Phys.Rev.A 63 032311

共引文献7

同被引文献36

  • 1邓秀金.美军开发量子通信[J].中国民兵,2000(5):49-49. 被引量:1
  • 2宋克慧.利用Λ型原子与双模腔场的相互作用进行量子信息处理[J].物理学报,2005,54(10):4730-4735. 被引量:12
  • 3HSIU M H, GALL F L. NP-hardness of decoding quantum error correction codes[EB/OL], http://www.arxiv.org/abs/1009.1319, 2010.
  • 4SARVEPALLI P, KLAPPENECKER A. Degenerate quantum codes and the quantum Hamming bound[J]. Physical Review A, 2010, 81(3): 1-4.
  • 5ASPURU G A, DUTOI A D, LOVE P J, et al. Simulated quantum computation of molecular energies[J]. Science, 2005, 309(5741): 1704-1707.
  • 6NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2000.
  • 7CALDERBANK A R, RAINS E M, SHOR P W, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369-1387.
  • 8KETKAR A, KLAPPENECKER A, KUMAR S, et al. Nonbinary stabilizer codes over finite fields[J]. IEEE Transactions on Information Theory, 2006, 52(11): 4892-4914.
  • 9CLEVE R, GOTTEAMAN D. Efficient computations of encodings for quantum error correction[J]. Physical Review A, 1997, 56(1): 76-82.
  • 10GOTTEAMAN D. Stabilizer Codes and Quantum Error Correction[D]. Pasadena: California Institute of Technology, 1997.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部