摘要
Monodispersed Fe3O4/polypyrrole (PPy) hollow particles were synthesized via controllable in-situ deposition and polymerization techniques using poly(styrene-co-acrylic) (PSA) latex as template. Field-dependent magnetization plot illustrates that the capsules are superparamagnetic at 300 K. FTIR spectrum confirms that the myoglobin (Mb) molecule adsorbed on the surface of Fe3O4/PPy hollow particle essentially retains its native structure. Furthermore, direct electrochemistry of Mb can be realized on Fe3O4/PPy capsules modified pyrolytic graphite disk electrode, which indicates that the magnetic conductive polymer capsules can promote the electron transfer of protein.
Monodispersed Fe3O4/polypyrrole (PPy) hollow particles were synthesized via controllable in-situ deposition and polymerization techniques using poly(styrene-co-acrylic) (PSA) latex as template. Field-dependent magnetization plot illustrates that the capsules are superparamagnetic at 300 K. FTIR spectrum confirms that the myoglobin (Mb) molecule adsorbed on the surface of Fe3O4/PPy hollow particle essentially retains its native structure. Furthermore, direct electrochemistry of Mb can be realized on Fe3O4/PPy capsules modified pyrolytic graphite disk electrode, which indicates that the magnetic conductive polymer capsules can promote the electron transfer of protein.
基金
the National Natural Science Foundation of China (No.10672154)
National Science Fund of Ministry of Education of Anhui Province (No.2005KJ135).