期刊文献+

一种基于平均相对偏差的聚类算法 被引量:2

Clustering Algorithm Based on Mean Relative Deviation
下载PDF
导出
摘要 在k-means算法基础上,提出利用平均相对偏差对数据的维分布密集度进行度量,并根据空间分布的密集度动态地给属性赋予权值。在计算平均相对偏差时,度量值与平均值间的偏差没有被平方,在一定程度上降低了孤立点的影响,与标准差相比具有更强的鲁棒性。仿真结果表明,基于平均相对偏差的聚类算法提高了聚类的质量。 Based on the k-means algorithm, mean relative deviation is presented to measure the degree of denseness, and dynamic weights of variables are associated with it. Because deviation between data and average is not squared, the effect of isolated data is reduced, which is more robustness than standard deviation. The simulation results show the mean relative deviation based on clustering algorithm could improve the quality of clustering.
作者 聂舟 程远国
出处 《兵工自动化》 2008年第8期32-34,共3页 Ordnance Industry Automation
关键词 聚类 K-MEANS 平均相对偏差 Clustering k-means Mean relative deviation
  • 相关文献

参考文献4

二级参考文献11

  • 1KAUFMAN L, ROUSSEEUW PJ. Finding Groups in Data: An Introduction to Cluster Analysis[ Z]. New York: John Wiley & Sons, 1990.
  • 2ESTER M, KRIEGEL H-P, SANDER J, et al. A density-based algorithm For discovering clusters in large spatial databases[ J]. In Proc1996 Int Conf Knowledge Discovery and Data Mining( KDD'96), 1996, 8:226 -231.
  • 3ANKERST M, BREUNIG M, KRIEGEL H-P, et al. OPTICS : Ordering points to identify the clustering structure[ A]. In Proc1999 ACM-SIGMOD Int Conf Management of Data(SIGMODX)9) [ C].Philadelphia, PA, 1999. 49 - 60.
  • 4WANG W, YANG J, MUNTZ R. STING: A statistical inFormation grid approach to apatial data mining[ A]. In Proc 1997 Int Corff Very Large Data Bases(VLDB'97) [ C]. AThens, Greece, 1997. 186 - 195.
  • 5SHEIKHOLESLAMI G, CHATTERJEE S, ZHANG A. Wave Cluster: A multi-resolution clustering approach For very. large spatial databases [ A]. In Proc 1998 Int Conf Very Large Data Bases(VLDB'98) [ C]. New York, 1998. 428 -439.
  • 6AGRAWAL R, GEHRKE J , GUNOPULOS D , et al. Automatic subspace clustering of high dimensional data For data mining applications[ A]. In Proc 1998 ACM-SIGMOD Int Cord Management of Data(SIGMOD'98) [ C]. Seattle, WA, 1998.94 - 105.
  • 7FISHER D. Improving inference through conceptual clustering[ A].In Proc 1987 AAAI Conf[C]. Seattle, WA, 1987.461 -465.
  • 8MACQUEEN J. Some methods For classification and analysis of multivariate observations [ J]. Proc 5th Berkeley Symp Math Statist,Prob, 1967, 1 : 281 -297.
  • 9Oleg Verevka.Local K-means Algorithm for Color Image Quantization.Proceedings of Graphics Interface 95[C].Quebec City,Canada,1995.
  • 10韩家炜 范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..

共引文献110

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部