期刊文献+

基于改进GA-SVR算法的隧道工程智能信息化设计研究 被引量:4

Research on Intelligence Information Design of Tunnels Based on the Improved GA-SVR Algorithm
下载PDF
导出
摘要 传统的信息化设计在监测信息处理、信息的反馈分析及初步设计的信息化修正等方面存在不准确、不及时和难以操作的缺点。本文结合铜黄高速公路坞石隧道的施工,将一种改进的支持向量回归(SVR)算法引入隧道工程的信息化设计中。采用十进制遗传算法搜索改进的SVR参数,形成改进的GA-SVR算法,并编制相应的计算程序。坞石隧道的应用结果表明,这种改进的GA-SVR算法无论是对监测数据的拟合预测,还是监测信息的反馈分析都能做到准确快速,在反分析完成后采用改进的GA-SVR算法进行3个开挖步内的位移超前预报也具有较高的精度。最后提出一种基于此算法的初步设计最优化修正方法,形成以此算法为核心的完整的隧道工程信息化设计方法,具有快速、操作简单和计算准确的优点。该算法可以在隧道工程中使用。 The conventional information design method has the disadvantages of being inaccurate, slow and inconvenient in monitoring data processing, information feedback analysis and initial design correction. In this paper,the improved support vector regression(SVR) algorithm is introduced into the field of tunnel engineering information design combined with the construction of the WUSHI Tunnel on the Tongling-Huangshan High- way. The decimal genetic algorithm is used to search for the parameters of the improved SVR model to form the improved GA-SVR algorithm, and the corresponding source codes are programmed. The application results in the WUSHI Tunnel show that the improved GA-SVR algorithm can reach high precision and speed in monito- ring data fitting and forecasting and in monitoring data feedback analysis and the improved GA-SVR algorithm can also acquire a better displacement prediction accuracy within three construction steps after displacement back analysis has been completed. Finally, the initial design optimization method based on the improved GA- SVR algorithm is brought forward to form the complete tunnel engineering information design system with the improved GA-SVR algorithm as the core. The proposed system is fast in processing, simple in operation and accurate in calculation. It can be applied in urban Metro and railway tunnel engineering construction widely.
出处 《铁道学报》 EI CAS CSCD 北大核心 2008年第4期71-78,共8页 Journal of the China Railway Society
基金 国家自然科学基金(50078002)
关键词 隧道工程 支持向量回归 遗传算法 位移预报 信息化设计 tunnel engineering support vector regression genetic algorithm displacement prediction informarion design
  • 相关文献

参考文献8

二级参考文献26

  • 1夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望[J].金属矿山,1995,24(12):9-12. 被引量:29
  • 2姚磊华.地下水运移随机数值模拟研究[M].北京:国家地震局地质研究所,1995..
  • 3冯夏庭.智能岩石力学及其在岩土工程中的应用:岩土力学新计算方法讲义[R].武汉:中国科学院武汉岩土力学研究所,1999..
  • 4杨林德.岩土工程问题的反演理论和工程实践[M].北京:科学出版社,1999..
  • 5Alex J Smola, Bemhard Schoelkopf. A tutorial on support vector regression[R]. NeuroCOLT2 Technical Report Series NC2-TR-1998030,1998.
  • 6Burge C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery. 1998. (2):121-167.
  • 7John C Platt. Sequential minimal optimization: a fast algorithm for training support vector maehines[R]. Technical Report MSR-TR-98-14, 1998.
  • 8孙均 蒋树屏 等.岩土力学反演问题的随机理论与方法[M].汕头:汕头大学出版社,1996..
  • 9刘宝碇,随机规划与模糊规划,1998年,15页
  • 10潘正君,演化计算,1998年,37页

共引文献193

同被引文献48

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部