期刊文献+

复小波包域遥感图像局部自适应融合算法

A Locally Adaptive Fusion Algorithm of Remote Sensing Images in Complex Wavelet Packet Domain
下载PDF
导出
摘要 为了使融合后的图像在保持原IKONOS卫星图像多光谱特性的同时,最大可能地提高图像空间分辨率,提出了一种基于四树复小波包变换的SAR图像与多光谱IKONOS卫星图像相融合的新方法.该方法利用复小波包变换的多方向性和对高频细节信号良好的时频局部化分析能力,分别对IKONOS图像经HIS空间变化的I分量子图和SAR图像进行复小波包分解,并对分解后的低频复系数采用取平均或取大值的方法、对高频方向复系数采用邻域一致性测度的局部自适应方法进行复系数融合.用融合后复系数经复小波包反变化得到的图像代替原IKONOS图像经HIS变换的I分量,再经HIS空间反变换得到最终的融合图像.实验结果表明,该融合算法在光谱保留和空间质量提高方面,比传统的基于小波变换的融合算法具有更高的性能. In order to enable the fused image to maintain multi-spectral characteristics of the original IKONOS satellite images and improve the image space resolution to its utmost limits, a new image fusion method based on quad-tree complex wavelet packet transform (QCWPT) is presented for multispectral IKONOS satellite image and SAR (Synthetic Aperture Radar) image, and the proposed image fusion method employs the multi-directional characteristics and excellent local time- frequency analysis ability of QCWPT for high frequency detail signals. The I component sub-image of the multispectral IKONOS satellite image via HIS space transform and the SAR image are decomposed separately by using the QCWPT. The low frequency complex wavelet packet coefficients are fused by using an average or large-value fusion method, and the high frequency complex wavelet packet coefficients are fused via a new fusion method, namely, a locally adaptive fusion method for neighborhood homogeneous measurement. The original i component sub-image of the multispectral IKONOS satellite images is replaced by the reconstruction image via reverse QCWPT. So, the last fusion image can be obtained via HIS space reverse transform. Experimental results show that the presented fusion algorithm is of higher performance than other traditional fusion methods in spectrum reservation and space quality improvement.
出处 《信息与控制》 CSCD 北大核心 2008年第4期396-402,共7页 Information and Control
基金 重庆市科委自然科学基金资助项目(CSTC:2006BB2393) 浙江省教育厅科研项目(20061661)
关键词 图像融合 四树复小波包变换 SAR图像 多光谱IKONOS卫星图像 邻域一致性测度 image fusion quad-tree complex wavelet packet transform (QCWPT) SAR (Synthetic Aperture Radar) image multispectral IKONOS satellite image neighborhood homogeneous measurement
  • 相关文献

参考文献9

  • 1樊旭艳,付春龙,石继海,武丽娟.基于主成分分析的遥感图像模拟真彩色融合法[J].测绘科学技术学报,2006,23(4):287-289. 被引量:26
  • 2Zhuo J, Civco D L, Silander J A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data [J]. International Journal of Remote Sensing, 1998, 19(4): 743-757.
  • 3Wilson T A, Rogers S K, Jr Myers L R. Perceptual-based hyperspectral image fusion using multiresolution analysis [J]. Optical Engineering, 1995, 34(11): 3154-3164.
  • 4Zhang Y, Hong G. An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images [J]. Information Fusion, 2005, 6(3): 225-234.
  • 5曹闻,李弼程,彭天强.一种基于小波包变换的遥感影像融合方法[J].遥感技术与应用,2003,18(4):248-253. 被引量:13
  • 6那彦,史林,杨万海.小波包变换与遥感图像融合[J].光子学报,2004,33(6):736-738. 被引量:19
  • 7王婷,李杰,赵鸣.基于小波包变换的图像融合技术的应用[J].同济大学学报(自然科学版),2006,34(9):1137-1141. 被引量:4
  • 8Jalobeanu A, Blanc-Feraud L, Zerubia J. Satellite image de, convolution using complex wavelet packets [A]. Proceedings of the IEEE International Conference on Image Processing [C]. Piscataway, NJ, USA: IEEE, 2000. 809-812.
  • 9Kingsbury N G. Image processing with complex wavelets [J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2543-2560.

二级参考文献40

  • 1[1]Yocky D A.Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data.Photogrammetric Engineering and Remote Sensing,1996,62(9):1067~1074
  • 2[2]Gross H N,Schott J R.Application of spetral mixture analysis and image fusion techniques for image sharpening.Remote Sensing of the Environment,1998,63:85~94
  • 3[3]Zhukov B,Berger M,Lanzl F,et al.A new technique for merging multispectral and panchromatic image revealing sub-pixel spetral variation.International Conference on Geoscience and Remote Sensing Symposium,1995,3:2154~2156
  • 4[4]Bretschneider T,Bones P J,Mcneill S.Resolution enhancement using multispectral remote sensed imagery.Proceeding of the Image and Vision Computing, New Zealand ′99,Christchurch, 1999.109~114
  • 5[7]Chipman L J, Timothy M,Graham L N.Wavelets and Image Fusion.Proc ICIP′95,1995.248~251
  • 6[8]Mallat S G. A Theory for multidimension signal decomposition:The wavelet representation.IEEE Trans.Pattern Analysis and Machine Intell,1989,11:674~693
  • 7[9]Mallat S G. Multifrequency channel decomposition of image and wavelet models.IEEE Trans Acoust Speech Signal Processing,1989,37:2091~2110
  • 8[2]David A Y.Image Merging and Data Fusion by Means of the Discrete Two-dimensional Wavelet Transform[J].J Opt Soc Am A,1995,12(9):1834-1841.
  • 9[4]Schetselaar E M.Fusion by the IHS Transform:Should We Use Cylindrical or Spherical Coordinates?[J].INT J Remote Sensing,1998,19(4):759-765.
  • 10Li H, Manjunath B S, Mitra S K. Multisensor Image Fusion Using the Wavelet Transform CJ]. Graphical Models and Image Processing, 1995, 27(3) ,235-244.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部