期刊文献+

新型分阶段粒子群优化算法 被引量:4

Novel multistage Particle Swarm Optimization algorithm
下载PDF
导出
摘要 针对粒子群优化算法的"早熟"问题,提出了一种新型分阶段粒子群优化算法。该算法通过调整惯性权重和加速系数使粒子自组织地跟踪局部吸引域和全局吸引域来扩大粒子的搜索空间和提高粒子的收敛精度,同时根据粒子处于不同的阶段实施相应的变异策略来增加种群的多样性。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。 A novel multistage particle swarm optimization is developed for solving premature convergence of particle swarm optimization.The particles are organized to track the domain of attraction of local optimum for enlarging search space and the domain of attraction of global optimum for improving convergence performance by adaptively adjusting the acceleration coefficients and the inertia weight.Meanwhile the corresponding strategies with mutation are adopted in different stages of the new algorithm to further enhance diversity of population.Experimental results for complex function optimization show this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第24期81-82,138,共3页 Computer Engineering and Applications
关键词 粒子群优化算法 惯性权重 加速系数 Particle Swarm Optimization (PSO) inertia weight acceleration coefficients
  • 相关文献

参考文献6

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press, 1995 : 1942-1948.
  • 2Eberhart R C,Shi Y.Particle Swarm Optimization: developments, applications and resources[C]//Proc 2001 Congress Evolutionary Computation.Piscataway,NJ:IEEE Press,2001:81-86.
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway,NJ:IEEE Press, 1998:69-73.
  • 4Shi Y,Eberhart R C.Fuzzy adaptive partic!e swarm optimization[C]// Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001 : 101 - 106.
  • 5Chen Guimin,Min Zhengfeng.Self-acfive inertia weight strategy in particle swarm optimization algorithm[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation,Dalian, China, 2006: 3686-3690.
  • 6Chen Guimin,Huang Xinbo,Jia Jianyuan.Natural exponential inertia weight strategy in particle swarm optimization[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation,Dalian, China, 2006: 3672-3676.

同被引文献36

  • 1邓佑满,张伯明,相年德.配电网络电容器实时优化投切的逐次线性整数规划法[J].中国电机工程学报,1995,15(6):375-383. 被引量:45
  • 2张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006,30(8):19-24. 被引量:60
  • 3陈永强,田亚菲,李景涛.基于并行粒子群算法的解相关多用户检测[J].电讯技术,2006,46(4):177-181. 被引量:2
  • 4聂宏展,张冰冰,王新,李迎红.基于改进粒子群优化算法的电力市场下的无功优化[J].电网技术,2007,31(21):85-90. 被引量:14
  • 5Verdu S. Minimum probability of error for asynchronous Gaussian multiple-access channels [ J ]. IEEE Transac- tions on Information Theory, 1986,32 ( 1 ) : 85- 96.
  • 6Deep K, Chauhan P, Pant M. A new fine grained inertia weight Particle Swarm Optimization [ C ]// Proceedings of 2011 World Congress on Information and Communication Technologies. Mumbai : IEEE, 2011 : 424-429.
  • 7Arasomwan M A, Adewumi A O. On adaptive chaotic in- ertia weights in particle swarm optimization [ C ]//Pro- ceedings of 2013 IEEE Symposium on Swarm Intelligence (SIS). Singapore: IEEE, 2013 : 72-79.
  • 8Shi Y, Eberhart R C. Population Diversity of Particle Swarms[ C ] //Proceedings of 2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE, 2008: 1063-1067.
  • 9Mahmoodabadi M J, Momennejad S, Bagheri A. Online Optimal Decoupled Sliding Mode Control Based on Mov- ing Least Squares and Particle Swarm Optimization [ J ]. Information Science,2014, 268 ( 15 ) :342-356.
  • 10Parsopoulos K E, Plagianakos V P, Magoulas G D, et al. Improving the Particle Swarm Optimizer by Function "stretching"[ J]. Advances in Convex Analysis and Global Optimization,2001 (2) :445-457.

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部