期刊文献+

可调节多约束Catmull-Clark细分曲面研究

Research on Adjustable Catmull-Clark Subdivision Surface with Multiple Constraints
下载PDF
导出
摘要 提出了一种顶点和法向约束下的细分曲面构造方法。即在约束点网格基础上,先用带形状因子的Doo-Sabin方法对其细分一次,然后采用Lagrange乘子法优化求解顶点、法向和相似性约束下的最小顶点扰动量,并根据优化结果反复调整顶点位置,最终得到满足插值条件的细分曲面控制网格。该方法无需求解全局方程组,控制网格求解效率高;而求解过程中相似性约束的增加,保证了插值曲面的质量;形状因子的引入,则起到调节位置和法向约束影响范围的作用,从而给设计者提供更多的形状表达自由度。 A method for constructing subdivision surface with constraints of vertices and normal vectors is proposed. After subdividing the meshes consisting of constrained vertices using Doo-Sabin method with shape factor, the minimum perturbations of vertices are solved with Lagrange multiplier optimization method with constraints of vertices, normal vectors and similarity. Then, locations of vertices are modified repeatedly according to the optimum result. Finally, the control net of subdivision surface that satisfies the interpolation requirements is acquired. This method does not need to solve global equations, so it has high efficiency, and similarity constraint guarantees the quality of interpolation surface. The introduction of shape factor can adjust the influence region of the constraints of vertices and normal vectors, which gives designers more freedom to make shape expression.
出处 《机械科学与技术》 CSCD 北大核心 2008年第8期992-995,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国防基础科研项目资助
关键词 顶点约束 法向约束 相似性约束 优化 形状因子 subdivision surface vertices constraint normal constraint similarity constraint shape factor
  • 相关文献

参考文献11

  • 1Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [ J ]. Computer Aided Design, 1978,10(6) :350 -355
  • 2Sederberg T, et al. Non-uniform recursive subdivision surfaces [ A]. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics[C], New York. ACM, 1998:387-393
  • 3Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces [ A ]. Computer Proceedings, Annual Conference Series[C], 1993, New York: ACM, 1993
  • 4Suzuki H, et al. Subdivision surface fitting to a range of points [ A ]. Proceedings Seventh Pacific Conference on Computer Graphics and Applications[ C], Los Alamitos: IEEE Comput, Soc, 1999:158-167
  • 5Biermann H, Levin A, Zorin D, Piecewlse smooth subdivision surfaces with normal control [ A ]. Computer Graphics Proceedings ( SIGGRAPH ), Annual Conference Series [ C ], New York:ACM, 2000:113 - 120
  • 6Ma W Y, Zhao N L. Smooth multiple B-spline surface fitting with Catmull-Clark subdivision surfaces for extraordinary comer patches[J]. Visual Computer, 2002, 18(7) : 415 -436
  • 7Nasri A, Abbas A. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints [ J ]. Computers & Graphics, 2002,26(3) ,393-400
  • 8Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology [ J ]. Computer Graphics Forum, 1996,15(3) :409-420
  • 9刘浩,廖文和.非均匀B样条曲面顶点及法向插值[J].数值计算与计算机应用,2006,27(4):260-270. 被引量:1
  • 10Zheng J M, Cai Y Y, Interpolation over arbitrary topology meshes using a two-phase subdivision scheme[J]. IEEE Transactions on Visualization and Computer Graphics, 2006,12(3 )

二级参考文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部