期刊文献+

基于量子遗传算法的文本特征选择方法研究 被引量:1

Research of text feature selection method based on quantum Genetic Algorithm
下载PDF
导出
摘要 特征选择方法是文本自动分类中的一项关键技术,提出了一种基于量子遗传算法的文本特征选择新方法,该方法用量子比特对文本向量进行编码,用量子旋转门和量子非门对染色体进行更新,同时,针对信息过滤的特点,对适应度函数进行了改进,充分考虑了特征权值、文本相似度和向量维数等。实验证明,该方法可以极大地降低文本的维数,提高分类的准确率。 Feature selection method is the critical technique of the automatic text categorization.The paper presents a new method of the text feature selection based on the quantum genetic algorithm.In the method,the text vector is coded by quantum bit,and the chromosome is updated by the quantum rotating gate and quantum not-gate.Meanwhile,according to the characteristics of the information filtering,we consider adequately on the feature, weight,text similarity and vector dimension in order to im- prove the fitness function.The experiment has proved that the method can reduee the dimension of text vector and improve the precision of text classification.
作者 邱烨 刘培玉
出处 《计算机工程与应用》 CSCD 北大核心 2008年第25期140-142,154,共4页 Computer Engineering and Applications
基金 山东省自然科学基金No.Y2006G20~~
关键词 文本分类 特征选择 量子遗传算法 text categorization feature selection quantum Genetic Algorithm
  • 相关文献

参考文献7

二级参考文献35

  • 1赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1999..
  • 2J. Rocchio. Relevance feedback in information retrieval. In: The SMART Retrieval System. Englewood Cliffs, NJ : Prentice-Hall,1971. 313-323.
  • 3Wu Lide, Huang Xuanjing, et al. Filtering, QA, Web and video tasks. The 10th Text Retrieval Conf. , Gathersburg, USA,2001. http://trec, hist. gov/pub.s/trecl0/t10_proceedings, html.
  • 4Zhai Chengxiang, Peter Jansen, Norbert Roma, et al.Optimization in CLAR1T TREC-8 Adaptive Filtering. The 8th Text Retrieval Conf., Gathersburg, USA, 1999. http://trec. nist. gov/pubs/trec8/t8_proceedings.html.
  • 5Avi Arampatzis. Unbiased S-D threshold optimization, initial query degradation, incrementality, for adaptive filtering. The 10th Text Retrieval Conf., Gathersburg, USA, 2001. http://trec. nist. gov/pubs/trecl 0/t10_proceedings. html.
  • 6Stephen Robertson, Ian Soboroff. The TREC 2001 filtering track report. The 10th Text Retrieval Conf., Gathersburg, USA,2001. http://trec, nist. gov/pubs/trecl0/t10_proceedings, html.
  • 7Stephen Robertson, lan Soboroff. The TREC 2002 filtering track report. The llth Text Retrieval Conf., Gathersburg, USA,2002. http://trec. nist. gov/pubs/trecl 1/t11_proceedings, html.
  • 8Robert E. Schapire, Yoram Singer Amit Singhal. Boosting and Rocchio applied to text filtering. In: Proc. of 21st ACM SIGIR Conf. on Research and Development in Information Retrieval.New York: ACM Press, 1998. 215--223.
  • 9J. Lafferty, C. Zhai. Risk minimization and language modeling in information retrieval. In: Proc. of the 24th ACM SIGIR Conf.on Research and Development in Information Retrieval. NewYork: ACM Press, 2001. 111--119.
  • 10Zhai Chengxiang, John Lafferty. Model-based feedback in the language modeling approach to information retrieval. In: Proc. of the 10th lnt' l Conf. on Information and Knowledge Management.New York: ACM Press, 2001. 403--410.

共引文献117

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部