期刊文献+

烧结法氧化铝生产常压脱硅改造实践 被引量:3

Practice of atmospheric desiliconization transformation for sintering alumina production
下载PDF
导出
摘要 分析了脱硅反应的原理及影响脱硅深度的因素。通过实验室模拟生产工况进行常压脱硅试验数据分析,得出常压脱硅是可行性的,应用于实际生产后,取得了明显的经济效益。 This paper analyzed the principles of desiliconization reaction and factors of influncing desiliconization depth. Pointed that it is feasible for desiliconization at atmospheric pressure by simulating the production conditions from atmospheric test data analysis in laboratory, After using in actual production, It has achieved remarkable economic benefits.
出处 《有色冶金节能》 2008年第4期26-28,58,共4页 Energy Saving of Nonferrous Metallurgy
关键词 氧化铝 脱硅指数 二氧化硅 晶种 影响 alumina desiliconization index silica seed influnce
  • 相关文献

同被引文献18

  • 1薛祎姝,刘伯跃,肖钊铝.依靠科技进步 降低氧化铝能耗[J].有色冶金节能,2004,21(5):10-11. 被引量:1
  • 2周涌,陈庆伟,吴晓蓓,胡维礼.基于动态神经网络解耦线性化的内模控制[J].南京理工大学学报,2004,28(6):566-570. 被引量:5
  • 3陈宝民,彭志宏.常压脱硅生产种分精液的试验研究[J].有色金属工业,2005(7):78-79. 被引量:1
  • 4李海明.强化预脱硅加常压脱硅生产种分精液的研究[J].轻金属,2006(11):11-14. 被引量:4
  • 5李志国.粗液脱硅工艺技术研究.中国有色金属,2007,:189-191.
  • 6Juang Chia - Peng. A Tsk - Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Al- gorithms[J]. IEEE Trans on Fuzzy Systems, 2002,10(2) : 155 - 170.
  • 7Sridhar Seshadri, Karthik Balakrishnan. Output Feedback Control of Nonlinear Systems Using RBF Nueral Networks [ J 1. IEEE Trans. On Nueral Network,2000,11 ( 1 ) : 69 - 112.
  • 8Liu Guohai, Chen Lingling, Dong Beibei, et al. RBF Neural Network Application in Internal Model Control of Permanent Magnet Synchro- nous Motor [ C ]//ISNN 2011 : proceedings of the 8th International Symposium on Neural Networks, Guilin, China, May 29-June 1,2011, Berlin : Springer,2011.
  • 9Shojaei A A,Othman M F,Rahmani R,et al. Implementation of Recur- rent Neural Network to Control Rotational Inverted Pendulum using IMC Scheme[J]. Journal of Basic and Applied Sciences,2012,6(7 ) : 299 - 306.
  • 10Chen Gaohua, Zhang Jinggang, Zhao Zhicheng, et al. Research of Multi- ple Internal Model Control Method Based on Fuzzy Neural Network [ J ]. Advances in Intelligent and Soft Computing,2012,139:1 -7 .

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部