期刊文献+

比率型时滞混合模型的持久性和全局吸引性

Permanence and global attractivity to a ratio-dependant mixed system with time delay
下载PDF
导出
摘要 考虑了一类比率型三种群的捕食时滞混合模型,利用微分方程比较定理得到了保证此系统持久性的充分条件,并且通过构造适当的Lyapunov函数的方法得到了保证此系统全局吸引性的充分条件. A three-species ratio-dependant mixed system with time delay is studied. By using compare theory, some sufficient conditions which guarantee the permanence of the system are determined. After that, by constructing a suitable Lyapunov functional, some sufficient conditions are derived for the global attractivity of the system.
出处 《山东理工大学学报(自然科学版)》 CAS 2008年第4期11-14,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 时滞 持久性 全局吸引性 time delay persistence global attractivity
  • 相关文献

参考文献7

二级参考文献43

  • 1陈凤德,陈晓星,林发兴,史金麟.一类时滞微分系统的周期解和全局吸引性[J].应用数学学报,2005,28(1):55-64. 被引量:12
  • 2Arditi R, Ginzburg L R. Coupling in predator-pyey dynamics: ratio-dependence[J]. J Theoretical Biology,1989,139:311-326.
  • 3Beretta E,Kuang Y. Global analyses in some delayed ratio-dependedt predator-prey systems[J]. Nonlinear Analysis T M A,1998,32:381-408.
  • 4Hsu S B, Hwang T W. Kuang Y. Global analysis of the Michaelis-Menten type ratio-dependent predatorprey system [J]. J Math Biol ,2001,42 : 489-506.
  • 5Hsu S B, Hwang T W, Kuang Y. Rich dynamics of a ratio-dependent one prey two predator model [J]. J Math Biol. ,2001,43:377-396.
  • 6Kuang Y. Rich dynamics of Gause-type ratio-dependent predator-prey system[J]. The Fields Institute Communications, 1993,21: 325 - 337.
  • 7Kuang Y,Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol ,1998,36:389-406.
  • 8Kuang Y,J Math Biol,1998年,36卷,389页
  • 9He X Z,J Math Anal Appl,1996年,198卷,355页
  • 10Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1983年

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部