期刊文献+

一种新的动态蚂蚁遗传混合算法应用研究 被引量:8

Application of new dynamic ant algorithm-genetic algorithm
下载PDF
导出
摘要 针对传统蚂蚁遗传混合算法收敛速度慢的特点,提出了一种新的动态蚂蚁遗传混合算法。新算法采用最佳融合点评估策略,动态地控制遗传算法与蚂蚁算法的调用时机,并设计了相应的信息素更新方法,有效减少了算法的冗余迭代次数,提高了搜索速度;同时引入迭代调整阈值控制算法后期的遗传操作和蚂蚁规模,加快了种群进化速度,从而更快地找到最优解。通过对Muth and Thompson基准问题进行计算机仿真,实验证明新算法收敛速度得到了提高。 To increase the convergence speed of the conventional ant algorithm-genetic algorithm, a new algorithm named dynamic ant algorithm-genetic algorithm was proposed. The proposed algorithm employed the best melting point evaluation strategy to control the calling of the two algorithms dynamically. In addition, the corresponding strategy to update the information cell to reduce the redundant times of iteration and increase the searching speed was also introduced in the algorithm. Yurthermore, the iteration adjustment threshold was introduced as well to not only control the genetic operation and size of the ant population in the later phase of the algorithm but also speed up the evolution process of the population so as to find the optimal solution faster. Computer simulation was carried out for Muth and Thompson standard problem, which showed that the convergence speed of the proposed algorithm was increased sharply.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第8期1566-1570,共5页 Computer Integrated Manufacturing Systems
基金 大连市计划资助项目(2007A10GX110) 大连市青年科技人才基金资助项目(2006J23JH039) 辽宁省基金资助项目(20072161)~~
关键词 动态蚂蚁遗传算法 最佳融合点 迭代调整阈值 Muth and Thompson基准问题 dynamic ant algorithm-genetic algorithm the best melting point iterative adjusting threshold Muth and Thompson standard problem
  • 相关文献

参考文献15

  • 1ABBATTISTA F, ABBATTISTA N, CAPONETTI L. An evolutionary and cooperative Agents model for optimization[C]//Pro ceedings of IEEE International Conference on Evolutionary Computation. Washington, D.C., USA:IEEE, 1995:668-671.
  • 2PILAT M L, WHITE T. Using genetic algorithms to optimize ACS-TSP [J]. Lecture Notes in Computer Science, 2002, 2463:282-287.
  • 3LI M,WANG H, LI P. Tasks mapping in multi-core based system: hybrid ACO&GA approach[C]// Proceedings of the 5th International Conference on ASIC. Washington, D. C. , USA:IEEE, 2003:335-340.
  • 4GONG D X, RUAN X G. A hybrid approach of GA and ACO for TSP [C]//Proceeding of the 5th World Congress on Intelligent Control and Automation. Washington, D. C., USA: IEEE, 2004:2068-2072.
  • 5丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 6毛宁,顾军华,谭庆,宋洁.蚁群遗传混合算法[J].计算机应用,2006,26(7):1692-1693. 被引量:12
  • 7熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 8史明霞,陶林波,沈建京.自适应遗传算法的改进与应用[J].微计算机应用,2006,27(4):405-408. 被引量:18
  • 9GHAIEBI H, SOI.IMANPUR M. An ant algorithm for optimization of hole making operations[J]. Computer& Industrial Engineering, 2007,52 (2):308-319.
  • 10赵宝江,李士勇,金俊.基于自适应路径选择和信息素更新的蚁群算法[J].计算机工程与应用,2007,43(3):12-15. 被引量:22

二级参考文献65

  • 1朱海梅,朱庆保,胡勇.具有自适应杂交特征的蚁群算法[J].计算机工程与应用,2004,40(22):81-83. 被引量:9
  • 2胡小兵,黄席樾.蚁群优化算法及其应用[J].计算机仿真,2004,21(5):81-85. 被引量:31
  • 3胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 4宁春林,田国会,尹建芹,路飞.Max-Min蚁群算法在固定货架拣选路径优化中的应用[J].山东大学学报(工学版),2003,33(6):676-680. 被引量:10
  • 5Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 6Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 7Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 8Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 9Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 10HOLLAND J H. Adaptation in natural and artificial systems[M].Ann Arbo, MI,USA:The University of Michigan Press,1975.

共引文献426

同被引文献109

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部