期刊文献+

可变粒度的业务质量评价模型及其算法研究 被引量:3

Research on the Variable Granularity Quality Evaluation Model and Arithmetic for Network Services
下载PDF
导出
摘要 针对现有的服务质量评价多面向特定业务和特定领域的特点,提出可变粒度的通用网络业务质量管理和评价模型,可以实现从用户、业务到网络系统的多级业务质量评价.同时,由业务管理、策略管理和网络管理共同所组成的服务质量保障模块,能根据SLA协商为用户提供有QoS保障的服务.给出了业务质量的主客观评价指标形式化定义和一般的评价流程,在此基础上采用组合证据和模糊评价理论,给出了不同粒度下的业务质量模糊评价算法.该算法将用户的主观性评价和客观性评价结合起来,从而在一定程度上降低了评价中的主观随意性. The current research on service quality evaluation is limited to specific domains or specific services. In the paper, to evaluate the running quality of network services, a variable granularity and fuzzy quality evaluation mechanism is proposed, which can achieve changeable granularity evaluation at different levels such as users, services and network systems. The mechanism integrates service management, policy management and network management together to provide QoS guaranteed services. The formal definition of evaluation metrics and the general evaluation flow are discussed. A fuzzy quality evaluation method for internet services is designed based on the D-S evidence theory and fuzzy evaluation concept. Examples show that the method can combine the subjective evaluation with objective evaluation and reduce subjectivity during evaluation process.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第8期1400-1404,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(90304006,60673170)资助
关键词 业务管理 业务质量 模糊评价 组合证据 评价粒度 service management service quality fuzzy evaluation D-S evidence theory evaluation granularity
  • 相关文献

参考文献5

二级参考文献24

  • 1林闯,彭雪海.可信网络研究[J].计算机学报,2005,28(5):751-758. 被引量:253
  • 2林闯,彭雪海.Research on Network Architecture with Trustworthiness and Controllability[J].Journal of Computer Science & Technology,2006,21(5):732-739. 被引量:11
  • 3ITU-T Rec.G.107-1998,The E-model:a computational model for use in transmission planning [S].
  • 4Takahashi A.Opinion model for estimating conversational quality of VOIP [A].International Conference on Acoustics,Speech,and Signal Processing [C].Montreal,Canada:IEEE,2004.1072-1075.
  • 5Kim D S,Tarraf A.Perceptual model for non-intrusive speech quality assessment [A].International Conference on Acoustics,Speech,and Signal Processing [C].Montreal,Canada:IEEE,2004.1060-1063.
  • 6Davies S B,Mermelstein P.Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences [J].IEEE Trans Acoustics,Speech,and Signal Processing,1980,28 (4):357-366.
  • 7Vapnik V N.Statistical learning theory [M].New York:Wiley,1998.
  • 8Lin Chunfu,Wang Shengde.Fuzzy support vector machines [J].IEEE Trans Neural Networks,2002,13(2):464-471.
  • 9Hsu Chihwei,Lin Chihjen.A comparison of methods for multiclass support vector machines [J].IEEE Trans on Neural Networks,2002,13(2):415-425.
  • 10Mozer M,Jordan M,Petsche T.Advances in neural information processing systems [M].Cambridge,USA:MIT Press,2000.547-553.

共引文献75

同被引文献28

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部