期刊文献+

神经网络模型预报炉温的研究 被引量:1

Research on Furnace Internal Temperature Prediction by Neural Network Models
下载PDF
导出
摘要 高炉生产过程极其复杂,给炉温状态预报带来很大困难。文章提出炉温预报中的TD-BP神经网络模型,结合模型,对众多参数的重要程度进行分析,在分析各参数相关性的基础上确定炉温预报模型的输入参数,通过计算机仿真证明,取得较好的效果。 The smelting of iron ores in a blast-furnace was a very complicated process that can make the prediction of furnace temperature difficuh. With regard to the TD BP neural network models used in predicting the furnace internal temperature, this article analyzed the respective importance of and the interrelationships between the many relating parameters. On the basis of those analyses, testing with the parameters was carried out and computer simulation had proved good results.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2008年第8期60-62,125,共4页 Journal of Wuhan University of Technology
关键词 炉温预报 神经网络模型 参数确定 temperature of furnace BP neural network models select parameter
  • 相关文献

参考文献3

二级参考文献10

  • 1Erol Gelenbe,IEEE Trans Neural Networks,1999年,10卷,1期,3页
  • 2Cho Sungzoon,IEEE Trans Neural Networks,1997年,8卷,4期,874页
  • 3Hao Peifeng,Proc'96 Int Conf High New Technology and Traditional Industry,1996年
  • 4Chow W S, Fang Y. A Recurrent Neural-network-based Real-time Learning Control Strategy Applying to Nonlinear Systems with Unknown Dynamics[J]. IEEE Trans on Neural Network,1998, 45(1):151-161.
  • 5Shen W X, Chan C C, Lo E W C, et al. A New Battery Available Capacity Indicator for Electric Vehicles Using Neural Network [J]. J of Power Sources, 2002, 43(6):817-826.
  • 6Zhong L,Liu L S,Zou C M,et al. The Application of Neural Network in Life Time Prediction of Concrete[J].J of Wuhan University of Technology, 2002, 17(1) :79-81.
  • 7Kennedy J,Eberhart R C. Particle Swarm Optimization[A]. Proc IEEE Int Conf on Neural Networks [C].Perth : IEEE Piscataway, 1995:1942-1948.
  • 8Kannana S, Mary S, Slochanal R,et al. Application of Particle Swarm Optimization Technique and Its Variants to Generation Expansion Planning Problem[J]. Electric Power Systems Research, 2004, 70 (8):203-210.
  • 9Yi D, Ge X R. An Improved PSO-based ANN with Simulated Annealing Technique [J]. Neurocomputing,2005, 63(11): 527-533.
  • 10孙彦广,王代先,陶白生,颜涛,史扬,方树飙,王远厚,沈文荣,倪根来,钱王平,翟强.智能钢包精炼炉控制系统[J].冶金自动化,1999,23(6):9-12. 被引量:5

共引文献30

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部