摘要
利用锥上的不动点指数定理考察了变系数非线性二阶周期边值问题的正解.主要定理表明,只要非线性项在某些有界集合上的增长速度是适当的,该问题就具有n个正周期解,其中n是一个任意的自然数.
The positive solutions are considered for a nonlinear second-order periodic boundary value problem with variable coefficient by applying the fixed point index theorems on cone. The main results show that the problem has n positive periodic solutions provided the growth rates of nonlinear term on some bounded sets are appropriate, where n is an arbitrary natural number.
出处
《应用数学学报》
CSCD
北大核心
2008年第3期564-573,共10页
Acta Mathematicae Applicatae Sinica
关键词
二阶常微分方程
周期边值问题
正解
存在性
多解性
second-order ordinary differential equation
periodic boundary value problem
positive solution
existence
multiplicity