期刊文献+

利用POD方法的固定界面模态综合技术 被引量:3

Fixed-interface component mode synthesis using proper orthogonal decomposition
下载PDF
导出
摘要 利用POD(Proper Orthogonal Decomposition)方法结合固定界面模态综合方法,提出了一种求解局部非线性问题的降阶方法。该方法将系统分成线性、非线性子结构。对于非线性子结构,利用POD方法构造POM(Proper Or-thogonal Mode)来代替传统的线性模态,然后利用线性约束模态代替非线性约束模态。文中通过算例说明了所提方法的有效性。通过此方法,避免了求解整个系统的响应,可以将POD降阶方法推广到含局部非线性的大型有限元模型。此外还提出采用一种更新的线性约束模态来近似估算非线性约束模态的方法,并利用该方法证明了当非线性子结构为弱非线性时,用线性约束模态代替非线性约束模态的合理性。 An approach to the development of reduced order models for systems with local nonlinearities is presented. The approach is an extension of the fixed-interface component mode synthesis technique. Specifically, the case of nonlinear substructures is handled by using fixed-interface proper orthogonal mode (POM). These normal modes are constructed for the various substructures by proper orthogonal decomposition (POD), and are then coupled through the traditional linear constraint modes. A class of systems is used to demonstrate the concept and show the effectiveness of the proposed procedure. The proposed method is applicable to the large-scale FEM models with local nonlinearities for reducing the degree of complication in the calculation of dynamic response of a whole system. Furthermore, the updated linear constraint modes are proposed to estimate the nonlinear constraint modes. It's proved that it's more convenient to replace nonlinear constraint modes with linear constraint modes for weakly nonlinear substructures by the method.
作者 尉飞 郑钢铁
出处 《振动工程学报》 EI CSCD 北大核心 2008年第4期365-370,共6页 Journal of Vibration Engineering
关键词 局部非线性 固定界面模态综合方法 模型降阶 非线性约束模态 local nonlinearities component mode synthesis model reduction nonlinear constraint mode
  • 相关文献

参考文献11

  • 1Fitzsimons P M, Rui C. Determining low dimensional models of distributed systems in advances in robust and nonlinear control systems[J]. ASME DSC, 1993, 53:9-15.
  • 2Cusumano J P, Bai B Y. Period-infinity periodic motions, chaos and spatial coherence in a 10-degree-offreedom impact oscillator [J]. Chaos, Solitons and Fractals, 1993,3:515-535.
  • 3Kreuzer E, Kust O. Analysis of long torsional strings by proper orthogonal decomposition [J]. Archive of Applied Mechanics, 1996,97 : 68-80.
  • 4Kerschen G, Golinval J C. Physical interpretation of the proper orthogonal modes using the singular value decomposition [J]. Journal of Sound and Vibration, 2002,249(5) : 849-865.
  • 5Steindl A, Troger H. Methods for dimension reduction and their application in nonlinear dynamics [J]. International Journal of Solids and Structures, 2001, 38:2 131-2 147.
  • 6Liang Y C, Lin W Z, Lee H P, et al. Proper orthogonal decomposition and its applications. Part Ⅱ: model reduction for MEMS dynamical analysis [J]. Journal of Sound and Vibration, 2002,256:515-532.
  • 7Azeez M F A, Vakakis A F. Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations [J]. Journal of Sound and Vibration, 2001,240 (5) : 859-889.
  • 8Kappagantu R, Feeny B F. An "optimal" modal reduction of a system with frictional excitation[J]. Journal of Sound and Vibration, 1999,224(5):863-877.
  • 9Kerschen G, Jean-Claude Golinval, Vakakis A F, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview [J]. Nonlinear Dynamics, 2005,41 : 147-169.
  • 10Liang Y C, Lee H P, Lim S P, et al. Proper orthogonal decomposition and its applications-part Ⅰ: theory [J]. Journal of Sound and Vibration. 2002,250(3): 527-544.

同被引文献15

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部