期刊文献+

两自由度碰撞振动系统的Poincaré映射的对称性及分岔 被引量:6

Symmetry of the Poincaré map and bifurcations of a two-degree-of-freedom vibro-impact system
下载PDF
导出
摘要 建立了具有双面碰撞约束的两自由度碰撞振动系统的力学模型,得到了系统的对称周期n-2运动。推导了Poincaré映射的对称性,并把映射不动点的分岔理论运用到该模型。对称周期运动对应于Poincaré映射的对称不动点。分析表明,Poincaré映射的对称性抑制了对称周期n-2运动的周期倍化分岔,Hopf-flip以及pitchfork-flip分岔,并证明了两个反对称的周期n-2运动具有相同的稳定性。数值模拟得到了对称周期n-2运动的Neimark-Sack-er分岔和音叉分岔。当Poincaré映射的雅可比矩阵有一个实特征值从+1处穿越单位圆时,一条稳定的对称的周期轨道失稳,并通过音叉分岔生成另外两条稳定的反对称的周期轨道。 A two-degree-of-freedom vibro-impact system having two-sided impact constraints is considered, and the symmetric period n--2 motion is obtained. The theory of bifurcations of the fixed point is applied to such model, and the symmetry of the Poincaré map is derived. The symmetric period n-2 motion corresponds to the symmetric fixed point of the Poincaré map. It is shown that the symmetry of the Poincaré map suppresses the period-doubling bifurcation, Hopf-flip bifurcation and pitchfork-flip bifurcation of the symmetric period n--2 motion, and it is proved that both the two antisymmetric period n--2 motions have the same stability. Pitchfork bifurcation and Hopf bifurcation of the symmetric period n-2 motion are obtained by numerical simulations. If the Jacobian matrix of the Poincaré map has a real eigenvalue crossing the unit circle at+1, the stable symmetric periodic orbit losses its stability, and bifurcates into two stable antisymmetric periodic orbits via pitchfork bifurcation.
作者 乐源 谢建华
出处 《振动工程学报》 EI CSCD 北大核心 2008年第4期376-380,共5页 Journal of Vibration Engineering
基金 国家自然科学基金(10472096 10772151) 西南交通大学博士创新基金资助项目
关键词 碰撞振动 POINCARÉ映射 对称周期运动 分岔 vibro-impact Poincarfi map symmetric period motion bifurcation
  • 相关文献

参考文献22

  • 1Holmes P J. The dynamics of repeated impacts with a sinusoidally vibrating table [J]. Journal of Sound and Vibration, 1982, 84(2): 173-189.
  • 2Shaw S W, A periodically forced piecewise linear oscillator[J]. Journal of Sound and Vibration, 1983, 90 (1): 129-155.
  • 3Shaw S W, Holmes P J. A periodically forced Impact oscillator with large dissipation[J]. Journal of Applied Mechanics, 1983, 50: 849-857.
  • 4Shaw S W, Holmes P J. Periodically forced linear oscillator with impacts: chaos and long-period motions [J]. Physical Review Letters, 1989, 51(8): 623-626.
  • 5Whiston G S. Global dynamics of a vibro-impacting linear oscillator[J]. Journal of Sound and Vibration, 1987, 115(2): 303-319.
  • 6Whiston G S. Singularities in vibro-impact dynamics [J]. Journal of Sound and Vibration, 1992, 152(3): 427-460.
  • 7Han R P S, Luo A C J, Deng W. Chaotic motion of a horizontal impact pair[J]. Journal of Sound and Vibration, 1995, 181(2): 231-250.
  • 8Budd C, Dux F. The effect of frequency and clearance vibrations on single-degree-of-freedom impact oscillators[J]. Journal of Sound and Vibration, 1995, 184 (3): 475-502.
  • 9Shaw S W. The dynamics of a harmonically excited system having rigid amplitude constraints, Part 1: Subharmonic motions and local bifurcations[J]. Journal of Applied Mechanics, 1985, 52: 453-458.
  • 10Shaw S W. The dynamics of a harmonically excited system having rigid amplitude constraints, Part 2: Chaotic motions and global bifurcations[J]. Journal of Applied Mechanics, 1985, 52: 459-464.

二级参考文献12

  • 1[1]Hsu CS.An unraveling algorithm for global analysis of dynamical systems-an application of cell-to-cell mapping.J Appl Mech,1980,47:940~948
  • 2[2]Shaw SW,Homes PJ.A periodically forced impact oscillator with large dissipation.J Appl Mech,1983,50:849~857
  • 3[3]Shaw SW.The dynamics of a harmonically excited system having rigid amplitude constraints (Parts Ⅰ and Ⅱ).J Appl Mech,1985,52:453~464
  • 4[4]Whiston GS.Global dynamics of a vibro-impacting linear oscillator.J Sound and Vibration,1987,118(3):395~424
  • 5[5]Whiston GS.The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator.J Sound and Vibration,1987,115(2):303~319
  • 6[6]Nordmark AB.Non-periodic motion caused by grazing incidence in an impact oscillator.J Sound and Vibration,1991,145(2):279~297
  • 7[7]Nordmark AB.Effects due to low velocity in mechanical oscillators.Int J of Bifur and Choas,1992,2(3):597~605
  • 8[8]Nordmark AB.A universal limit mapping in grazing bifurcations.Phys Rev E,1997,55:266~270
  • 9[9]Ivanov AP.Stabilization of an impact oscillator near grazing incidence owing to resonance.J Sound and Vibration,1993,162(3):562~565
  • 10[10]Aidanpaa JO,Gupta RB.Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system.J Sound and Vibration,1993,165(2):305~327

共引文献4

同被引文献41

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部