期刊文献+

含油制冷剂R134a饱和液相运动黏度及表面张力实验测量 被引量:5

Kinematic Viscosity and Surface Tension of R134a Refrigerant-Oil Mixtures in Saturated Liquid Phase from 273.15 K to 293.15 K
下载PDF
导出
摘要 以制冷剂R134a与润滑油的均匀混合物为研究对象,对其饱和液体的运动黏度、表面张力进行了实验测量,其中实验温度范围为273.15~293.15K,润滑油牌号为Solest120且其质量分数分别为20×10^-6、50×10^-6、80×10^-6、100×10^-6。实验数据显示,随着含油量的增加,合油R134a饱和液体的运动黏度、表面张力呈明显的递增趋势,且润滑油对R134a饱和液体运动黏度的影响随温度的升高逐渐减弱,对其表面张力的影响则随温度的升高逐渐增强。同时,依据实验数据,采用数学中常用的非线性回归法建立了含油R134a饱和液体的运动黏度、表面张力与温度、含油量之间的函数关系式,其中运动黏度关系式的相对偏差绝对平均值为2.22%,表面张力关系式的相对偏差绝对平均值为0.43%。 The kinematic viscosity and the surface tension of R134a and oil mixtures in saturated liquid phase from 273. 15 K to 293. 15 K are measured, the brand of the lubricant is Solestl20 and its mass fractions are 20×10^-6 , 50×10^-6 , 80×10^-6 and 100×10^-6 , respectively. These experimental results indicate that at the same temperature, with the increase in mass fraction Of lubricant, the kinematic viscosity and the surface tension of R134a refrigerant-oil mixtures in saturated liquid phase are enhanced significantly, the impact of lubrication on kinematic viscosity gradually decreases with the rising temperature and the impact of lubrication on surface tension gradually increases with the rising temperature. According to the experimental results, the principle of nonlinear regression is chosen to construct the relational expressions describing the relation between the kinematic viscosity, the surface tension and variation of temperature and mass fraction of lubricant, and their absolute averages of relative deviations reach to respectively 2. 22% and 0. 43% compared with the experimental results.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第9期1065-1069,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50521604,50376049) 新世纪人才基金资助项目(NCET-04-0925)
关键词 含油R134a 实验测量 运动黏度 表面张力 R134a refrigerant-oil mixtures experimental measurement kinematic viscosity surface tension
  • 相关文献

参考文献14

  • 1Chiaki Y, Shinji T. Saturated liquid densities of 2,2- dichloro-1,1,1-trifluoroethane (HCFC-123), 1,2-dichloro-1,2,2-trifluoroethane (HCFC-123a), 1,1,1,2- tetrafluoroethane (HFC-134a) and 1,1,1-trifluoroeth- ane (HFC-143a) [J]. Fluid Phase Equilibria, 1991, 67(1) : 227-240.
  • 2ROTH R T, BAEHR H D. Burnett measurements and correlation of gas-phase (P, p, T) of 1,1,1,2-tet- rafluoroethane (R134a) and of 1, 1-difluoroethane (R152a) [J]. Journal of Chemical Thermodynamics, 1992, 24(4): 413-424.
  • 3ZHU Mingshan, FU Yidong, HAN Lizhong. An experimental study of PVT properties of CFC alternative HFC-134a [J]. Fluid Phase Equilibria, 1992, 80(1) : 149-156.
  • 4ZHU Mingshan, HAN Lizhong, LU Chunxiao. Surface tension of HFC-134a [J]. Fluid Phase Equilibria, 1993, 86(1): 363-367.
  • 5SHAO D W, GRANRYD E. Heat transfer and pres sure drop of HFC134a-oil mixtures in a horizontal condensing tube [J]. International Journal of Refrigeration, 1995, 18(8): 524-533.
  • 6HAMBRAEUS K. Heat transfer of oil-contaminated HFC134a in a horizontal evaporator [J]. International Journal of Refrigeration, 1995, 18(2): 87-99.
  • 7HAJERI M H A, KOLUIB A M, MOSAAD M, et al. Heat transfer performance during condensation of R-134a inside helicoidal tubes [J]. Energy Conversion and Management, 2007, 48(8): 2309-2315.
  • 8LIU Zhongliang, ZHANG Xinghua, WANG Hongyan, et al. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes, part Ⅰ: experimental study [J]. Experimental Thermal and Fluid Science, 2007, 31(7): 789- 794.
  • 9MERMOND Y, FEIDT M, MARVILLET C. Thermodynamic and physical properties of mixtures of refrigerants and oils [J]. International Journal of Refrigeration, 1999, 22(7): 569-579.
  • 10MARSH K N, KANDIL M E. Review of thermodynamic properties of refrigerants+ lubricant oils [J]. Fluid Phase Equilibria, 2002, 199(1/2): 319-334.

二级参考文献6

  • 1梁国光.恒压变速毛细管粘度测试方法.中国,发明型,ZL95115461.3.2000
  • 2Kim S, Cho Y. A Method of Isolating Surface Tension and Yield Stress Effects in a U-Shaped Scanning Capillary-Tube Viscometer using a Casson Model. J.Non-Newtonian Fluid Mech., 2002, 103:205-219
  • 3Shin S, Keum D Y. Measurement of Blood Viscosity using Mass-Detecting Sensor. Biosensor &: Bioelectronics,2002, 17:383-388
  • 4Yung L J, Yuo T J, Tui Y C. The Marching Velocity of the Capillary Meniscus in a Microchunnel. J. Micromech.Microeng, 2004, 14:220-225
  • 5Lemmon E W, McLinden M O, Huber M L. NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP Version 7.0 UserstGuide. Boulder: NIST,2002. 61-78
  • 6Kestin J, Wakeham W A. Transport Properties of Fluids.New York: Hemisphere Publishing Corporation, 1988.75-76

共引文献3

同被引文献47

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部