期刊文献+

采用R^*-tree的三角网格曲面非均匀精简算法 被引量:10

Simplified Algorithm for Triangular Mesh Surface Based on R^*-tree
下载PDF
导出
摘要 提出了一种三角网格曲面非均匀精简算法。该算法采用R^*-tree组织三角网格曲面的空间拓扑结构,实现了三角面片拓扑邻域的快速查询。结合三角网格曲面模型的曲率分布状况,对三角网格曲面进行聚类分簇处理,通过对分簇网格进行局部精简,实现了三角网格曲面模型的整体保形性精简。与同类精简算法的对比实验表明,该算法的数据适应性强,有效地保留了三角网格曲面的型面特征,精简后的网格模型与原网格模型的面片偏差降低了20%~45%,精简时间减少了10%~35%。 A new simplified algorithm for triangular mesh surface is proposed, which organizes the topological structure of the triangular mesh surface based on R^*-tree spacial index structure to inquire the topological neighborhoods of the triangular mesh surface. Then the triangular mesh surface is discreted into many clusters by the triangular mesh surface features, and the triangular mesh surface is ununiformly simplified throughout the clusters. The stronger adaptability is verified and the features of the triangular mesh surface is remained effectively. It is found that the deviation is reduced by 20%-45%, and the computing period is subtracted by 10%-35% compared with the existing algorithms.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第9期1179-1183,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2006AA04Z105)
关键词 R^*-tree 三角网格曲面 非均匀精简 R^*-tree triangular mesh surface ununiform simplification
  • 相关文献

参考文献8

  • 1ROSSIGNAC J, BORREL P. Multi-resolution 3D approximation for rendering complex scenes [M]//Falcidieno B, Kunii T L. Modeling in Computer Graphics. New York: Springer-Verlag, 1993 : 455-465.
  • 2周昆,潘志庚,石教英.一种新的基于顶点聚类的网格简化算法[J].自动化学报,1999,25(1):1-8. 被引量:28
  • 3ISENBURG M, LINDSTROM P, GUMHOLD S, et al. Large mesh simplification using processing sequences [C]//Proceedings of IEEE Visualization. Piscataway, NJ, USA: IEEE, 2003 : 465-472.
  • 4WU Jianhua, KOBBELT L. A stream algorithm for the decimation of massive meshes [C]//Proceedings of Graphics Interface. Halifax, Canada. Nova Scotia, 2003:185-192.
  • 5田怀文,王金诺.表面重建中的三角网简化方法[J].西南交通大学学报,2002,37(2):150-153. 被引量:1
  • 6刘宇,朱仲英,施颂椒.空间k近邻查询的新策略[J].上海交通大学学报,2001,35(9):1298-1302. 被引量:17
  • 7BECKMANN N, KRIEGEL H P, SCHNEIDER R,et al. The R^k -tree: an efficient and robust access method for points and rectangles [C]//Proceedings of Sigmod. New York, USA: ACM, 1990 : 322-331.
  • 8Lo S H. Delaunay triangulation of non-convex planar domains [J]. International Journal for Numerical Methods in Engineering, 1989,28 ( 11 ) : 2695-2707.

二级参考文献12

  • 1潘志庚,马小虎,石教英.虚拟环境中多细节层次模型自动生成算法[J].软件学报,1996,7(9):526-531. 被引量:63
  • 2周晓云 刘慎权.基于特征角准则的多面体模型简化方法[J].计算机学报,1996,19:217-223.
  • 3[1]Guttman A. R-trees: a dynamic index structure for spatial searching [A]. ACM SIGMOD [C]. Waterloo, Ontario, Canada: [s.n.], 1984, 13(2): 47~57.
  • 4[2]Samet H. The design and analysis of spatial data structures [M]. Reading, MA: Addison-Wesley, 1990. 130~153.
  • 5[3]Friedman J H, Bentley J L, Finkel R A. An algorithm for finding the best matches in logarithmic expected time [J]. ACM Trans Math Software, 1977, 3(3): 209~226.
  • 6[4]Sproull R F. Refinements to nearest neighbor searching in k-dimensional trees [J]. Algorithmic, 1991, 15(6):579~599.
  • 7[5]Rousspoulos N, Kelly S, Vincent F. Nearest neighbor queries [A]. In Proceedings of the ACM SIGMOD International Conference on the Management of Data [C]. San Jose, CA, USA: [s.n.], 1995, 24(2): 71~79.
  • 8[6]Hjaltason G R, Samet H. Distance browsing in spatial databases [J]. ACM Transaction on Database Systems, 1999, 24(2):265~318.
  • 9[1]Bernd Hamann.A data reduction scheme for triangulated surfaces[J]. Computer Aided Geometric Design., 1994;11: 197-214.
  • 10[2]Choi B K, Shin H Y, Yoon Y I et al. Triangulation of scattered data in 3D space[J]. Computer-Aided Design., 1988;20(5): 239-248.

共引文献43

同被引文献56

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部