期刊文献+

一种改进的贝叶斯网络结构学习算法 被引量:10

Improved Bayesian Networks Structure Learning Algorithm
原文传递
导出
摘要 贝叶斯网络的结构学习是数据挖掘与知识发现领域的主要研究技术之一,能从大量数据中寻找隐含的概率依赖关系和知识表达模型,对复杂决策任务的建模与求解提供支持,具有重要的研究意义。文章通过分析结构学习方法(K2和MCMC算法)的基本思想,将两种算法的优点和模型平均的思路结合起来,提出一种改进的贝叶斯网络结构学习算法。仿真实验证明该算法解决了K2和MCMC算法的缺陷,可以在无先验知识的情况下以较快的收敛速度获得较正确、稳定的模型结构。 Bayesian networks structure learning is one of main research techniques in the field of data mining and knowledge discovering, which can find underlying probabilistic dependence relationships between variables and knowledge expression model from a great deal of data, and support modeling and resolving for complex decision-making tasks, so that it has an import research signification. According to analyzing classical Structure Learning methods (K2 and MCMC algorithms), an improved Bayesian networks Structure Learning algorithm was proposed combined with the merits of above two algorithms and the idea of model averaging. Experiment results show that the proposed algorithm can cover shortages of K2 and MCMC algorithms and can quickly achieve a comparative correct and steady model structure without priori knowledge.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第17期4613-4617,共5页 Journal of System Simulation
基金 重庆市科委科技计划攻关重大项目(cstc2006aa7024) 重庆市自然科学基金项目(cstc2006bb2190)。
关键词 贝叶斯网络 结构学习 模型平均 K2 MCMC bayesian networks structure learning model averaging K2 MCMC
  • 相关文献

参考文献10

  • 1胡笑旋,杨善林,马溪骏.面向复杂问题的贝叶斯网建模方法[J].系统仿真学报,2006,18(11):3242-3246. 被引量:15
  • 2Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: The combination of knowledge and statistical data [J]. Machine Learning (S0885-6125), 1995, 20(3): 194-243.
  • 3张少中,王秀坤.基于约束最大信息熵的贝叶斯网络结构学习算法[J].小型微型计算机系统,2005,26(6):983-987. 被引量:6
  • 4Gregory F Cooper, Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning (S0885-6125), 1992, 9(4): 309-347.
  • 5Paolo Giudici, Robert Castelo. Improving Markov Chain Monte Carlo Model Search for Data Mining [J]. Machine Learning (S0885-6125), 2003, 50(1-2): 127-158.
  • 6Giudici P, Passerone G. Data mining of association structures to model consumer behaviour [J]. Computational Statistics and Data Analysis (S0167-9473), 2002, 38(4): 533-541.
  • 7岳博,焦李成.Bayes网络学习的MCMC方法[J].控制理论与应用,2003,20(4):582-584. 被引量:4
  • 8Nir Friendman, Daphne Koller. Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks [J]. Machine Learning (S0885-6125), 2003, 50(1-2): 95-125.
  • 9Madigan D, Andersson S, Perlman M, Volinsky C. Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs [J]. Communications in Statistics: theory and methods (S0361-0926), 1996, 25(11 ): 2493 -2512.
  • 10Dennis M Buede, Joseph A Tatman. Terry A. Bresnick. Introduction to Bayesian Networks [DB/OL] (1998.6) [2008.1]. http://www.ecse. rpi. edu/Homepages/qji/TutFinbd.ppt.

二级参考文献36

  • 1..http://www. cs. huji. ac. il/labs/compbio/Repository/Datasets/alarm/alarm. htm,.
  • 2COOPER G, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992,9(3) :309 - 374.
  • 3BUNTINE W. Theory refinement on Bayesian networks [A]. Proc of 7 th Conf Uncertainty Artificial Intelligence [ C ]. Los Angeles,CA, 1991:652 - 660.
  • 4CHIPMAN H, GEORGE E, McCULLOCH R. Bayesian CART model search [J]. J of the American Statistical Association, 1998,93(4):935 -948.
  • 5HECKERMAN D, GEIGER D, CHICKERING D. Learning Bayesian networks: The combination of knowledge and statistical data [J].Machine Learning, 1995,20(2) : 197 - 243.
  • 6KHALFALLAH F, MELLOULI K. Optimized algorithm for learning Bayesian network from data [ A ]. Proc of the European Conf on Symbolic and Quantitative Approach to Reasaning and Uncertainty[C]. London: Cambridge Press, 1999.
  • 7LIU J, CHANG K, ZHOU J. Learning Bayesian networks with a hybrid convergent method [J]. IEEE Trans Systems, Man, Cybernetics, 1999,29(2) :436 - 449.
  • 8Cooper G F , Herskovits E. A bayesian method for the induction of probabilistic networks from data[J]. Machine Learning,1992,9:309-347.
  • 9Suzuki J. A construction of bayesian networks from databases based on an MDL principle[C]. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence. Washington D.C. , 1993:266-273.
  • 10Lam W and Bacchus F. Using causal information and local measures to learning bayesian networks[C]. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence. Washington D.C. , 1993:243-250.

共引文献22

同被引文献78

引证文献10

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部