期刊文献+

量子退火算法研究进展 被引量:13

Quantum Annealing Algorithms:State of the Art
下载PDF
导出
摘要 在数学和应用领域,量子退火算法是一类新的量子优化算法.不同于经典模拟退火算法利用热波动来搜寻问题的最优解,量子退火算法利用量子波动产生的量子隧穿效应来使算法摆脱局部最优,而实现全局优化.在已有的研究中,量子退火算法在某些问题上展现出良好的优化效果.系统地综述了量子退火算法的基本原理和近年来的主要研究进展,较为详细地介绍了几个主要的量子退火算法,对量子退火算法的优点和可能的不足进行了分析评述,并对今后的研究方向进行了展望. In mathematics and applications, quantum annealing is a new method for finding solutions to combinatorial optimization problems and ground states of glassy systems using quantum fluctuations. Quantum fluctuations can be simulated in computers using various quantum Monte Carlo techniques, such as the path integral Monte Carlo method, and thus they can be used to obtain a new kind of heuristic algorithm for global optimization. It can be said that the idea of quantum annealing comes from the celebrated classical simulated thermal annealing invented by Kirkpatrick. However, unlike a simulated annealing algorithm, which utilizes thermal fluctuations to help the algorithm jump from local optimum to global optimum, quantum annealing algorithms utilize quantum fluctuations to help the algorithm tunnel through the barriers directly from local optimum to global optimum. According to the previous studies, although the quantum annealing algorithm is not capable, in general, of finding solutions to NP-complete problems in polynomial time, quantum annealing is still a promising optimization technique, which exhibits good performances on some typical optimization problems, such as the transverse Ising model and the traveling salesman problem. Provided in this paper is an overview of the principles and research progresses of quantum annealing algorithms in recent years; several different kinds of quantum annealing algorithms are presented in detail; both the advantages and disadvantages of each algorithm are analyzed; and prospects for the research orientation of the quantum annealing algorithm in future are given.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第9期1501-1508,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60401015 60572012) 安徽省自然科学基金项目(050420201)~~
关键词 量子退火 蒙特卡罗方法 优化算法 量子优化 量子计算 quantum annealing Monte Carlo method optimization algorithms quantumoptimization quantum computation
  • 相关文献

参考文献28

  • 1赵卫中,冯好娣,朱大铭.欧氏空间货郎担问题的一个多项式时间近似方案的改进与实现[J].计算机研究与发展,2007,44(10):1790-1795. 被引量:3
  • 2周华奇,鲁鸣鸣,朱洪.有不同中断时间代价的一致并行抢先调度问题[J].计算机研究与发展,2005,42(3):507-513. 被引量:2
  • 3Tadashi K, Hidetoshi N. Study of optimization problems by quantum annealing [D]. Tokyo; Tokyo Institute of Technology, 1998
  • 4Kadowaki T, Hidetoshi N. Quantum annealing in the transverse Ising model[J]. Physics Review E, 1998, 58(5) : 5355-5364
  • 5Stella L, Santoro G E, Tosatti E. Monte Carlo studies of quantum and classical annealing on a double well[J]. Physics Review B, 2006, 73(14): 144302(1)-144302(15)
  • 6Stella L, Santoro G E, Tosatti E. Optimization by quantum annealing: Lessons from simple cases[J]. Physics Review B, 2005, 72(1): 014303(1)-014303(15)
  • 7Martonak R, Santoro G E, Tosatti E, et al. Supplemental material to theory of quantum annealing of an Ising spin glass [OL], ]2007-04-09]. http://www. sciencemag. org/cgi/data/ 295/5564/2427/DC1/1
  • 8Feynman R P, Hibbs A R. Quantum Mechanics and Path Integrals [M]. New York: McGraw-Hill, 1965
  • 9Feynman R P. Statistical Mechanics [M]. New York: Reading, 1972
  • 10Berne B J, Thirumalai D. On the simulation of quantum systems; Path integral methods [J]. Ann Review of Physical Chemistry, 1986, 37: 401-424

二级参考文献24

  • 1张丽琴,王家映,严德天.一维波动方程波阻抗反演的同伦方法[J].地球物理学报,2004,47(6):1111-1117. 被引量:16
  • 2L. A. Hall. Approximation algorithms for scheduling. In: D.Hochbaum, ed.. Approximation Algorithms for NP-Hard Problems. Boston: PWS Publishing, 1996. 1-45.
  • 3R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 1966, 45 : 1563-1581.
  • 4M. R. Garey, D. S. Johnson. Computers and Intractability: A Guild to the Theory of NP-Completeness. New York: W.H.Freeman and Company, 1979.
  • 5Cormen H. Thomas, Leiserson E. Charles, Rivest L. Ronald,et al. Introduction to Algorithms. 2nd Edition. Cambridge,MA: The MIT Press, 2002.
  • 6Lewis R. Harry, Papadimitriou H. Christos. Elements of the Theory of Computation. 2nd Edition. New Jersey: Prentice-Hall,1998.
  • 7Trugenberger C A.Quantum optimization for combinatorial searches.New Journal of Physics,2002,4:26.1 ~ 26.7
  • 8Metropolise N,Rosenbluth A,Rosenbluth M,et al.Equation of state calculations by fast computing machines.Chern.Phys.,1953,21:1087~ 1092
  • 9黄光远 许闻天 傅国华.地震勘探数据处理的一种算法—分布参数系统最优理论的应用[J].地球物理学报,1985,28(1):74-83.
  • 10王家映.地球物理反演理论北京:高等教育出版社,2000.

共引文献33

同被引文献133

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部