期刊文献+

一类多速率动态系统的异步数据融合算法 被引量:4

Asynchronous data fusion algorithm based on a class of multirate dynamic systems
原文传递
导出
摘要 针对不同传感器以不同采样率、异步对同一目标进行观测的一类线性时不变动态系统,给出了一种有效的状态融合估计方法。利用该方法进行状态估计,首先根据多尺度系统理论,针对每一个传感器分别建立起相应的系统模型;然后利用Kalman滤波和有反馈分布式融合结构进行数据融合并给出状态估计。该方法避免了插值以及状态和观测的扩维,具有较好的实时性。理论分析和仿真结果均表明,融合估计结果在估计误差方差最小意义下,优于最高采样率的传感器Kalman滤波的结果,融合算法是有效的。 An asynchronous data fusion algorithm for a class of linear time-invariant dynamic systems was presented. There were multiple sensors observing the same single target with different sampling rates asynchronously. Firstly,based on multiscale system theory,the system models were established at each coarse scale aimed at each sensor that had lower sampling rates. The states that the sensors with lower sampling rates observed at coarse scales were modeled as the states average at the finest scale of a proper period approximately with the system noises being omitted. The observations of different sensors at different scales were connected with the state at the highest sampling rate. Secondly,the fused state estimation was obtained using Kalman filter and the distributed structure with feedback. The proposed method could avoide the interpolation and augmentation of state or measurement dimensions,and had a good real time property. The measurements with lower sampling rates were used to estimate the state at coarse scales,while the state estimations were regressed to the finest scale and used to update the state estimation at the finest scale. Theoretical analysis and simulation results show that the fused estimation is better than the Kalman filter result of the sensor with the highest sampling rate,and the algorithm is effective.
出处 《红外与激光工程》 EI CSCD 北大核心 2008年第4期611-615,共5页 Infrared and Laser Engineering
基金 国家"863"高技术资助项目(2006AA705215) 中国博士后科学基金资助课题(20070410049)
关键词 数据融合 状态估计 多速率 KALMAN滤波 Data fusion,State estimation,Multirate,Kalman filter
  • 相关文献

参考文献8

  • 1王鲁平,李飚,胡敏露.一种基于多传感器数据融合的目标跟踪算法[J].红外与激光工程,2004,33(2):194-197. 被引量:10
  • 2胡振涛,楚艳萍,刘先省.测量方差自适应的多传感器数据融合算法[J].红外与激光工程,2005,34(6):741-746. 被引量:12
  • 3CARLSON N A. Federated square root filter for decentralized parallel processors [J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517-525.
  • 4ALOUANI A T, RICE T R. On optimal synchronous and asynchronous track fusion [J]. Optical Engineering, 1998, 37 (2): 427-433.
  • 5YAN Li-ping, LIU Bao-sheng, ZHOU Dong-hua. The modeling and estimation of asynchronous multirate multisensor dynamic systems [J]. Aerospaee Seienee and Technology, 2006, 10(1): 63-71.
  • 6BLAIR W D, RICE T R, MCDOLE B S, et al. Least-squares approach to asynchronous data fusion [C]// Proceedings of SPIE,Aequisition, Tracking, and Pointing VI, 1992, 1697: 130-141.
  • 7葛泉波,汪国安,汤天浩,文成林.基于有理数倍采样的异步数据融合算法研究[J].电子学报,2006,34(3):543-548. 被引量:9
  • 8CHUI C K, CHEN G. Kaiman Filtering: With Real-time Applications. New York: Springer, 1999.

二级参考文献26

  • 1文成林,吕冰,葛泉波.一种基于分步式滤波的数据融合算法[J].电子学报,2004,32(8):1264-1267. 被引量:31
  • 2汪颖进,张桂林.新的基于Kalman滤波的跟踪方法[J].红外与激光工程,2004,33(5):505-508. 被引量:13
  • 3Belur V Dasarathy. Decision fusion strategies in multi-sensor environments[J]. IEEE Transactions On Systems Man Cybernetics, 1991,21(5):1140-1154.
  • 4Romine J, Kamen E, Sastty C. Fusion of radar and image sensor data for target tracking[A]. SPIE Signal and Data Processing of Small Target[C]. 1994, 2335. 558-569.
  • 5Blair D, Rice T R, Alouni A T. Asynchronous data fusion for target tracking with a multi-tasking radar and optical sensor acquisition[A]. SPIE Tracking and Pointing[C]. 1991,1482.234-245.
  • 6何友 王国宏.多传感器信息融合及应用[M].北京:电子工业出版社,2001..
  • 7Carlson N A,Berarducei M P.Federated filter simulation results[J].Navigation,1994,41(3):297-321.
  • 8Gao Y,Krakiwsky E J,Abousalerm A,et,al.Comparison and analysis of centralized decentralized and federated filters[J].Navigation,1993,40(1):69-86.
  • 9王明辉.多传感器数据融合跟踪算法研究[D].北京:清华大学,2003.
  • 10刘炯明.数据融合及应用[M].北京:国防工业出版社,1999.

共引文献27

同被引文献42

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部