摘要
在L-拓扑空间中引入SR强F可数紧性,给出了其α-有限交式、覆盖式等刻划.并证明了SR强F可数紧性具有有限可和,可乘,对半正则闭子集遗传,L-good extension等许多性质.
SR strong fuzzy countable compactness is introduced in L-topological, and its characterizations with α-finite intersection and cover are given. It is shown that SR strong fuzzy countable compactness has many properties,For instance,the sum of finite SR strong fuzzy countable compact sets is a SR strong fuzzy countable compact set,it is multiplicative,hereditary with respect to semi-regular close subset ,L-good extension and so on.
出处
《聊城大学学报(自然科学版)》
2008年第2期12-14,41,共4页
Journal of Liaocheng University:Natural Science Edition
基金
教育部科学技术研究重点项目(206089)
山东省软科学技术项目(B2005049)
关键词
L-拓扑空间
SR强F可数紧性
α-有限交性质
L-topological space, SR strong fuzzy countable compactness, α-finite intersection property