期刊文献+

脉动流激励下输流管道的参数共振IHB方法研究 被引量:7

ANALYSIS OF PARAMETRIC RESONANCES FOR PIPES CONVEYING PULSATING FLUID WITH IHB METHOD
下载PDF
导出
摘要 应用增量谐波平衡法(IHB法)研究脉动流激励下两端铰支输流管的参数共振。对无量纲的运动微分方程采用两振型Galerkin展开式离散化后,用IHB法分析了管道一阶1/2次谐波参数共振,并得到了幅-频响应曲线。将其与数值模拟解以及平均法结果比较发现,IHB法所得到的响应比平均法更加精确。研究同时表明:高阶模态对管道的一阶参数共振影响很小。 Parametric resonances of pinned-pinned pipes conveying pulsating fluid are investigated by using the incremental harmonic balance (IHB) method. After discretizing the governing equations with Galerkin method, the sub-harmonic parametric resonance of the order 1/2 is analyzed and the amplitude-frequency response curves are obtained with the IHB method. They are compared with the results of the numerical simulations using the method of averaging. It is found out that the results from the IHB method are more accurate than those from the averaging method. the results also show that higher order modes have little influence on the parametric resonance of the first mode.Numerical examples illustrate the efficiency and accuracy of the IHB method in analysis of a fluid-solid coupled system.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第9期44-46,共3页 Journal of Vibration and Shock
基金 国家自然科学基金资助(10702045)
关键词 输流管道 脉动流 增量谐波平衡(IHB)法 参数共振 pipes conveying fluid pulsating fluid incremental harmonic balance (IHB) method parametric resonance
  • 相关文献

参考文献13

  • 1Paidoussis M P, Issid N T. Experiments on parametric resonance of pipes containing pulsatile flow[ J]. ASME Journal of Applied Mechanics, 1976,43 : 198-202.
  • 2Ariaratnam S T, Namachchivaya N S. Dynamic stability of pipes conveying pulsating fluid [J].Journal of Sound and Vibration, 1986,107:215-230.
  • 3Namaehehivaya N S, et al. Non-linear dynamics of supported pipe conveying pulsating fluid. 1. Subharmouic resonance and 2. Combination resonance [ J ]. International Journal of Nonlinear Mechanics, 1989,24 : 185-208.
  • 4金基铎,杨晓东,尹峰.两端铰支输流管道在脉动内流作用下的稳定性和参数共振[J].航空学报,2003,24(4):317-322. 被引量:17
  • 5金基铎,宋志勇,杨晓东.两端固定输流管道的稳定性和参数共振[J].振动工程学报,2004,17(2):190-195. 被引量:21
  • 6Jin J D, Song Z Y. Parametric resonances of supported pipes conveying pulsating fluid [ J ]. Journal of Fluids and Structures, 2005,20 (6) :763-783.
  • 7金基铎 梁峰 张宇飞.输流管道参数共振响应的一种近似解法.振动与冲击,2006,25:623-625.
  • 8Lau S L, Cheung Y K. Amplitude incremental variational principle for non-linear vibration of elastic systems [ J ]. ASME Journal of Applied Mechanics, 1981,48(4) :959-964.
  • 9Cheung Y K, Chen S H, Lau S L. Application of the incremental harmonic balance method to cubic non-linearity systems [ J ]. Journal of Sound and Vibration, 1990, 140 ( 2 ) : 273-286.
  • 10Zhang W Y, Huseyin K. Complex formulation of the IHB technique and its comparison with other methods [ J ]. Applied Mathematical Modelling,2002,26 ( 1 ) :53-75.

二级参考文献26

  • 1Paidoussis M P. Fluid-structure instabilities. San Diego: Academic Press, 1988
  • 2Paidoussis M P, Li G X, Moon F C. Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. J. Sound and Vibration, 1989;135:1-19
  • 3Holmes P J. Pipes supported at both ends connot flutter. J. Applied Mechanics, 1978;45:619-622
  • 4Paidoussis M P, Issid N T. Experiments on parametric resonance of pipes containing pulsatie fluid. J. Applied Mechauics, 1976; 43: 198-202
  • 5Ariaratnam S T, Namachchivaya N S. Dynamic stability of pipes conveying pulsating fluid. J. Sound and Vibration, 1986;107:215-230
  • 6Namachchivaya N S, et al. Non-linear dynamics of supported pipe conveying pulsating fluid. 1. Subharmonic resonance and 2. Combination resonance. Int. J. NonLinear Mechanics, 1989; 24:185-208
  • 7Jayaraman K, et al. Chaotic oscillations in pipes conveying pulsating fluid. Nonlinear Dynamics, 1996; 10: 333-357
  • 8Moon F C. Chaotic Vibrations, NY: John Wiley, 1987
  • 9[1]Wickert JA,Mote CD.Current research on the vibration and stability of axially-moving materials.Shock and Vibration,1988,29(5):3~13
  • 10[2]Pellicano F,Vestroni F.Nonlinear dynamics and bifurcations of an axially moving beam.Journal of Vibration and Acoustics,2000,122:21 ~ 30

共引文献67

同被引文献71

  • 1周永兆,杨晓东,金基铎.输流管道非线性横向振动固有频率分析[J].振动.测试与诊断,2012,32(S1):66-68. 被引量:5
  • 2王忠民,张战午,李会侠.弹性地基上输送振荡流粘弹性管道的动力稳定性[J].机械工程学报,2005,41(10):57-60. 被引量:4
  • 3徐鉴,杨前彪.FLOW-INDUCED INTERNAL RESONANCES AND MODE EXCHANGE IN HORIZONTAL CANTILEVERED PIPE CONVEYING FLUID (Ⅱ)[J].Applied Mathematics and Mechanics(English Edition),2006,27(7):935-941. 被引量:4
  • 4Semler C, Pa'idoussis M P. Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe [J]. Journal of Fluids and Structures, 1996, 10(7): 787--825.
  • 5Paidoussis M P, Li G X, Moon F C. Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid [J]. Journal of Sound and Vibration, 1989, 135(1): 1--19.
  • 6Impollonia N, Elishakoff I. Effect of elastic foundations on divergence and flutter of an articulated pipe conveying fluid [J]. Journal of Fluids and Structures, 2000, 14(4): 559--573.
  • 7Dutta S C, Roy R. A critical review on idealization and modeling for interaeion among soil-foundation-structure system [J]. Computers & Structures, 2002, 80(20-21): 1579-- 1594.
  • 8Doare O, de Langre E. Local and global instability of fluid-conveying pipes on elastic foundations [J]. Journal of Fluids and Structures, 2002, 16(1): 1-14.
  • 9Paidoussis M P. Fluid-structure interactions, slender structures and axial flow[ M]. Academic Press, San Diego, 1998.
  • 10Ariaratnam S T, Namachchivaya N S. Dynamic stability of pipes conveying pulsating fluid [ J ]. Journal of Sound and Vibration, 1986,107:215 - 230.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部