期刊文献+

基于分形理论的非线性信号噪声污染程度检测 被引量:2

Measuring noise level in nonlinear signals based on fractal theory
下载PDF
导出
摘要 针对以傅立叶分析为代表的传统方法在非线性信号分析上的不足,提出了将分形理论应用于非线性信号含噪分析的方法,设计了具体实验的流程,并结合实际心电数据进行了相关的实验。实验结果表明:周期性非线性时间序列与随机噪声在分形指数上有明显差异,当随机噪声对原始信号的影响程度变化时,分形维数也随之变化;分形维数可以有效地描述工程数据被噪声污染的程度,因而具有良好的工程应用前景。 In terms of the disadvantage of traditional methods represented by Fourier analysis applied in analysis of nonlinear signals, a new approach based on fractal theory was provided to analysis random noises in nonlinear signals. Experiment results on real electrocardiograph(ECG) signals demonstrated remarkable gap between the periodical nonlinear time series and random noi- ses; moreover, fractal dimensions varied with different levels of impact from random noise on original time series. These results imply that fractal dimension can effectively describe how the data is affected by random noise and thus usher the prospect in engineering application.
作者 许可 孟濬
出处 《机电工程》 CAS 2008年第9期4-7,共4页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(60574079)
关键词 分形 噪声分析 非线性 心电信号(图) fractal noise analysis nonlinear electrocardiograph (ECG)
  • 相关文献

参考文献6

  • 1YUAN C Q, LI J, YAN X P, et al. The use of the fractal description to characterize engineering surfaces and wear particles [ J ]. Wear, 2003,25 ( 5 ) : 315 - 326.
  • 2MANDELBROT B B, WHEELER J A. The fractal geometry of nature [ J ]. American Journal of Physics, 1983,51 ( 3 ) : 286 - 287.
  • 3GRASSBERGER P. Generalizations of the Hausdorff dimension of fractal measures [ J ]. Physics Letters A, 1985,107 (3):101 -105.
  • 4HIGUCHI J I, MIYATA T, TAKAGUI T. Two types of fractal dimensions for phase separation in multicomponent polymer membranes [ J ]. Journal of Polymer Science, 1999,37 (13) :1545 - 1550.
  • 5PEITGEN H O, JURGENS H, SAUPE D. Chaos and fractals., new frontiers of science[ M]. [ S. l. ] :SpringerVerlag, 2004.
  • 6付冲,马希敏,李晖,朱伟勇.复杂系统混沌行为判别与混沌时间序列的分形建模[J].南京航空航天大学学报,2006,38(B07):34-37. 被引量:3

二级参考文献8

  • 1Jaggard D L, Sun X. Scattering from fractal corrugated surfaces[J]. Journal of the Optical Society of America, 1990, 7(6): 1131-1139.
  • 2Mandelbrot B B. Fractals: form, chance and dimension[M]. San Francisco: Freeman W H, 1997: 36-85.
  • 3Xia H. Micro cellular propagation characteristics for personal communications in urban and suburban environments [J]. IEEE Transaction on Vehicular Technology, 1994, 43(3):743-751.
  • 4Takens F. Detecting strange attractor in turbulence[J]. Mathematics, 1981, 898:366-381.
  • 5Grassberger P P. Measuring the strangeness of strange attractor[J]. Physica D, 1983, 9:189-208.
  • 6Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J].Physica D, 1985, 16: 285-317.
  • 7Haykin S,Li X B. Detection of signals in chaos [J].IEEE Proceedings, 1995, 83(1):95-122.
  • 8Lo T, Leung H,Litva J, et al. Fractal characterization of sea-scattered signals and detection of sea-surface targets [J]. IEE Proceedings F, 1993, 140(4)243-250.

共引文献2

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部