期刊文献+

关于Bernstein-Kantorovich-Bézier算子对一类绝对连续函数的逼近 被引量:1

Rate of Convergence of Bernstein-Kantorovich-Bézier Operator for Some Absolutely Continuous Functions
下载PDF
导出
摘要 利用经典的Bojanic-Cheng方法,结合分析技术,分别讨论了Bernstein-Kantorovich-Bézier算子在0<α≤1及α≥1时,对一类绝对连续函数的逼近. By using Bojanic-Cheng' s method and analysis techniques, the author studies the approximation properties of Bernstein-Kantorovich-Bezier Operator for some absolutely continuous functions in the case of 0 〈 a ≤ 1 and a ≥1 respectively.
出处 《泉州师范学院学报》 2008年第4期1-3,15,共4页 Journal of Quanzhou Normal University
关键词 Bernstein-Kantorovich-B6zier算子 逼近度 绝对连续函数 Bernstein-Kantorovich-Bezier operator rate of convergence absolutely continuous functions
  • 相关文献

参考文献5

  • 1LIU Z X. Approximation of the Kantorovich-Bezier operators in Lp[0,1][J]. J Northeastern Math, 1991,7(2) :199-205.
  • 2ZENG X M,PIRIOU A. On the rate of convergence of two Bernstein-Bezier type operators for bounded variation[J].J Approx Theory, 1998(95) : 369-387.
  • 3ZENG X M. On the rate of convergence of two Bernstein-Bezier type operators for bounded variation Ⅱ[J]. J Approx Theory, 2000 (104) :330-344.
  • 4连博勇,陈旭,曾晓明.关于Bernstein-Bézier算子对一类绝对连续函数的逼近[J].厦门大学学报(自然科学版),2006,45(6):749-751. 被引量:5
  • 5BOJANIC R,CHENG F. Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J]. J Math Anal Appl, 1989 (141):136-151.

二级参考文献6

  • 1Chang G.Generalized Bernstein-Bézier polynomials[J].J.Comput.Math.,1983,1(4):322-327.
  • 2Li P,Gong Y H.The order of approximation by the generalized Bernstein-Bézier polynomials[J].J.of China Univ.of Science and Technology,1985,15(1):15-18.
  • 3Liu Z X.Approximation of continuous functions by the generalized Bernstein-Bézier polynomials[J].Approx.Theory.Appl.,1986,2(4):105-130.
  • 4Zeng X M,Piriou A.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions[J].J.Approx.Theory,1998,95:369-387.
  • 5Zeng X M.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II[J].J.Approx.Theory,2000,104:330-344.
  • 6Bojanic R,Cheng F.Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J].J.Math.Anal.Appl.,1989,141:136-151.

共引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部