期刊文献+

基于智能卡的含有效期的电子现金系统 被引量:2

E-cash System with Validity Duration Based on Smart Card
下载PDF
导出
摘要 为防止银行数据库记录的无限膨胀,提高系统的执行效率,该文将有效期加入基于智能卡的电子现金系统中,提出基于智能卡的含有效期的离线电子现金系统。该系统采用基于椭圆曲线的数字签名技术来实现。智能卡由于容量有限,椭圆曲线需要较小长度的密钥就可以获得较高的安全性,相对离散对数,椭圆曲线更适合应用于基于智能卡的电子现金系统中。因为该系统基于椭圆曲线离散对数表示问题,所以其安全性也是基于椭圆曲线离散对数的安全性。 In order to prevent the database of the bank expanding infinitely and improve the performance efficiency of the system, this paper proposes an off-line e-cash system with validity duration based on the smart card by adding the validity duration into electronic cash system. The system applies the signature based on the elliptic curve to realize. As the capability of the smart card is limited, and the elliptic curve can achieve much better security and only need much shorter keys, the elliptic curve is much more adapt to e-cash system based on smart card than the discrete logarithm. The system is based on expression question of elliptic curve dispersed number, so its security is based on the security of elliptic curve dispersed logarithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第17期133-135,共3页 Computer Engineering
基金 国家电子信息发展基金及河北省信息产业发展计划基金资助项目(2005035025) 国家科技部高新技术计划基金资助项目(2005EJ000017) 河北省自然科学基金资助项目(F2005000368)
关键词 智能卡 有效期 椭圆曲线 盲签名 smart card validity duration elliptic curve blind signature
  • 相关文献

参考文献4

二级参考文献12

  • 1KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48:203-209.
  • 2MILLER V S. Use of elliptic curve in cryptography[A]. Advances in Cryptology-CRYPTO'85, Lecture Notes in Computer Science[C]. Springer-Verlag, 1986. 417-426.
  • 3CAMENISCH J L, PIVETEAU J M, STADLER M A. Blind signatures based on the discrete logarithm problem[A]. Advances in Cryptology - EuroCrypto'94[C]. 1995.428-432.
  • 4CHAUM D. Blind signatures for untraceable payments[A]. Proceedings of Crypto'82[C]. Santa Barbara, 1982. 199-203.
  • 5CHAUM D. Security without identification: transaction systems to make big brother obsolete [J]. Communications of the ACM, 1985,28(10): 1030-1044.
  • 6YACOBI Y. Efficient electronic money[A]. Proceedings of Asiacrypt'94 [C]. Wollongong, 1994. 153-163.
  • 7CAMENISCH J, MAUR U, STADLER M. Digital payment systems with passive anonymity-revoking trustees[J]. Journal of Computer Security, 1997, 5(1): 69-89.
  • 8CHAUM D, PEDERSEN T. Wallet databases with observers[A]. Advances In Cryptology-Crypto'92[C]. Berlin, 1992.90-106.
  • 9BRANDS S. Untraceable off-line cash in wallet with observers[A]. Advances In Cryptology-CRYPTO'93[C]. Santa Barbara, 1994.302-318.
  • 10SCHNORR C. Efficient signature generation by smart cards[J]. Journal of Cryptology, 1991, 4(3): 161-174.

共引文献13

同被引文献14

  • 1孟庆树,王丽娜,傅建明,等译.密码编码学与网络安全(第四版)[M].北京:电子工业出版社,2006,(7).
  • 2刘玉珍,王丽娜,傅建明,等译.密码编码学与网络安全(第三版)[M].北京;电子工业出版社,2003,(7).
  • 3Chaum D.Blind Signature for Untraceable Payment[C] //Proc.of Advances in Cryptology-Eurocrypt'83.Berlin,Germany:Spring-Verlag,1983:199-203.
  • 4Lysyanskaya A,Ramzan Z.Group Blind Digital Signatures:A Scalable Solution to Electronic Cash[C] //Proc.of Financial Cryptography-FC'98.[S.l.] :Springer-Verlag,1998:184-197.
  • 5Hanatani Y,Komano Y,Ohta K.Provably Secure Electronic Cash Based on Blind Multi-signature Schemes[C] //Proc.of FC'06.[S.l.] :Spring-Verlag,2006:236-250.
  • 6Tan Zuowen.Hierarchical Proxy Blind Signature:A Solution to E-cash in the Real World[C] //Proc.of ICYCS'08.[S.l.] :Springer-Verlag,2008:1476-1480.
  • 7Wang Guilin.Designated-verifier Proxy Signature Schemes[C] //Proc.of IHP/SEC'05.Berlin,Germany:Spring-Verlag,2005:409-423.
  • 8Nicolosi A,Krohn M,Dodis M,et al.Proacfive Two-party Signatures for User Authentication[Z].(2003-10-21).http://www.isoc.org/isoc/conferences/ndss/.
  • 9张焕国,译.椭圆曲线密码学导论[M].北京:电子工业出版社,2005.
  • 10龚晓萍,刘志朋,黄继红.基于椭圆曲线盲签名的安全数字时间戳方案[J].计算机工程,2008,34(13):147-148. 被引量:5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部