期刊文献+

求解单调变分不等式的一个近似邻近点算法

An Approximate Proximal Point Algorithm for Monotone Variational Inequalities
下载PDF
导出
摘要 给出求解单调变分不等式问题的一个近似邻近点算法,在不需要任何中间步骤的条件下证明算法的收敛性.本算法的误差准则比已知算法更宽松. An approximate proximal point algorithm for solving monotone variational inequalities is constructed, and the convergence of the algorithm is proved under the condition that any indirect step is not required. The error criterion of this algorithm is less restrictive than known algorithms.
作者 唐国吉
出处 《广西科学》 CAS 2008年第3期257-259,共3页 Guangxi Sciences
基金 广西民族大学青年科学基金项目(2007QN25)资助
关键词 变分不等式 邻近点算法 收敛性 variational inequalities, proximal point algorithm, convergence
  • 相关文献

参考文献9

  • 1Ferris M C,Pang J S. Engineering and economic applications of complementarity problems[J]. SIAM Review, 1997,39 : 669-713.
  • 2Rockafellar R T. Augmented lagrangians and applications of the proximal point algorithm in convex programming [J]. Mathematics of Operations Research, 1976, 1 :97- 116.
  • 3Rockafellar R T. Monotone operators and the proximal point algorithm[J]. SIAM J Control Optim, 1976, 14 : 877-898.
  • 4Martinet B. Regularisation d'inequations variationnelles par approximation successives[J].Rev Francaise Informat, Recherche Operationnelle (Ser. R - 3 ), 1970 (4):154-158.
  • 5He Bingsheng,Qian Maijian,WangYumei. Study on approximate proximal point algorithms for monotone variational inequalities [C]//Yuan Yaxiang. Numerical linear algebra and, optimization. Beijing: Science press, 2004:15-41.
  • 6何炳生,杨振华,廖立志.极大单调算子的一个新的近似邻近点算法[J].中国科学(A辑),2002,32(11):1026-1032. 被引量:13
  • 7王治华.关于单调变分不等式的不精确邻近点算法的收敛性分析[J].高等学校计算数学学报,2003,25(4):336-343. 被引量:8
  • 8Han Deren,He Bingsheng. A new accuracy criterion for approximate proximal point algorithms[J]. J Math Anal and Appl, 2001,263 : 343-354.
  • 9ChrIstian Kanzow,Houyuan Jiang. A continuation method for (strongly) monotone variational inequalities[J].Mathematics Programming, 1998,81:103-125.

二级参考文献23

  • 1[1]Brezis H. Operateurs Maximaux Monotone et Semi-Groups de Contractions dans les Espaces de Hilbert.Amsterdam: North-Holland, 1973
  • 2[2]Burachik R S, Iusem A N, Svaiter B F. Enlargement of monotone operators with applications to variational inequalities. Set-Valued Analysis, 1997, 5:159~180
  • 3[3]Rockafellar R T. Monotone operators and the proximal point algorithm SIAM Journal on Control and Optimization, 1976, 14:877~898
  • 4[4]Teboulle M. Convergence of proximal-like algorithms. SIAM Journal on Optimization, 1997, 7:1069~1083
  • 5[5]Eckstein J. Approximate iterations in Bregman-function-based proximal algorithms. Mathematical Programming, 1998, 83:113~123
  • 6[6]Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems. Mathematical Programming, 1994, 64:81~101
  • 7[7]Han D R, He B S. A new accuracy criterion for approximate proximal point algorithms. J of Mathematical Analysis and Applications, 2001, 263:343~354
  • 8[8]He B S. Inexact implicit methods for monotone general variational inequalities. Mathematical Programming,1999, 86:199~217
  • 9[9]Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal points algorithm for maximal monotone operators. Mathematical Programming, 1992, 55:293~318
  • 10[10]Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation, Numerical Methods. Englewood Cliffs:Prentice-Hall, 1989

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部