期刊文献+

有效的板料成形反向模拟法应力修正策略

Efficient Strategy for Stress Distritution in Inverse Analysis of Sheet Metal Stamping
下载PDF
导出
摘要 金属在流经凹模圆角时受到强烈的弯曲作用,传统的板料成形反向模拟法没有考虑变形历史对应力预测的影响,使得反向模拟法计算的应力值与实际情况有较大偏差.针对反向模拟法无法准确预测成形零件应力分布的缺点,提出一种快速搜索流经凹模圆角区域的单元的方法,对该部分单元进行应力修正.采用一种高效的单轴连续拉伸应力应变本构关系模型,避免了增量有限元法应力应变更新算法的复杂性,同时充分考虑了凹模圆角对金属变形历史的影响.NUMISHEET’93盒形件拉深的标准考题中,通过与增量有限元模拟软件DYNAFORM计算结果的比较,验证了采用提出的多步连续拉伸本构关系模型可以有效地反映变形历史的影响,获得更加接近实际的应力分布. To overcome shortcomings of traditional inverse analysis method(TIAM), a fast and reliable searching scheme is used to find elements passing through die entrance radius during deformation process. An efficient stress - strain relation for continuous uniaxial tensile test is introduced to update stress distributions. Constitutive equations avoid complexity of incremental FEM based stress/strain updating algorithms, and effects of die entrance radius on deformation history are considered. Numisheet'93 square box drawing benchmark demonstrates that the constitutive equations significantly enhance prediction of stress distribution compared with incremental FEM based software DYNAFORM.
出处 《计算物理》 EI CSCD 北大核心 2008年第5期585-590,共6页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10472058) 山东建筑大学博士科研启动基金资助项目
关键词 周期性边界条件 多孔介质 自然对流 三维数值模拟 sheet metal stamping inverse analysis method constitutive equations
  • 相关文献

参考文献8

  • 1王金彦,陈军,李明辉.板料成形回弹数值模拟的有限元模型及非协调模式[J].机械工程学报,2005,41(10):6-10. 被引量:8
  • 2Tang B T, Zhao Z, Lu X Y, et al. Fast thickness prediction and blank design in sheet metal forming based on an enhanced inverse analysis method[J]. International Journal of Mechanical Sciences, 2007, 49(9) : 1018 - 1028.
  • 3Tang B T, Zhao Z, Hagenah H, et al. Energy based algorithms to solve initial solution in one - step finite element method of sheet metal stamping[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196( 17- 20): 2187 -2196.
  • 4唐炳涛,赵震,陈军,董湘怀,阮雪榆.多工步板料成形问题的多步反向模拟法[J].机械工程学报,2006,42(12):211-217. 被引量:16
  • 5Lee C H, Huh H. Three dimensional multi- step inverse analysis for the optimum blank design in sheet metal forming processes [J]. Journal of Materials Processing Technology, 1998, 80 - 81 : 76 - 82.
  • 6Naceur H, Guo Y Q, Ben- Elechi S. Response surface methodology for design of sheet forming parameters to control springback effects [J]. Computers and Structures, 2006, 84(26 - 27) : 1651 - 1663.
  • 7Gun Y Q, Batoz J L, Naeeur H. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach [J]. Computers and Structures, 2000, 78(1 - 3) : 133 - 148.
  • 8Danckert Joachim. Experimental investigation of a square-cup deep-drawing process [ J]. Journal of Materials Processing Technology, 1995, 50( 1 - 4) :375 - 384.

二级参考文献25

  • 1Liu W K, Hu Y K, Belytschko T. Multiple quadrature underintegrated finite elements. International Journal for Numerical Methods in Engineering, 1994, 37:3 263~3 289
  • 2Belytschko T, Leviatham I. Phisical stabilization of the 4-node shell element with one point quadrature. Computer Methods in Applied Mechanics and Engineering, 1994,113: 321~350
  • 3Wang C T. An industrial outlook for springback predictability, measurement reliability and compensation technology. NUMISHEET'2002, 2002, Jeju Island, Korea, 2002:597~604
  • 4Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: Part Ⅰ three-dimensional shells. Computer Methods in Applied Mechanics and Engineering,1998,155: 193~234
  • 5Belytschko T, Lin J I, Tsay C S. Explicit algorith ms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering, 1984, 42:225~251
  • 6Parisch H. A continuum-based shell theory for non-linear applications. International Journal for Numerical Methods in Engineering 1995, 38:1 855~1 883
  • 7Hauptmann R, Schweizerhof K. A systematic development of ‘solid-shell' element formulations for linear and non-linear analyses employing only displacement degrees of freedom. International Journal for Numerical Methods in Engineering, 1998, 42:49~69
  • 8Miehe C. A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains.Computer Methods in Applied Mechanics and Engineering,1998, 155: 193~234
  • 9Büchter N, Ramm E, Roehl O. Three dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. International Journal for Numerical Methods in Engineering, 1994, 37:2 551~2 568
  • 10Sansour C. A theory and finite element formulation of shells at finite deformation involving thickness change. Archive of Applied Mechanics, 1995, 65:194~216

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部