期刊文献+

基于非结构化数据的本体学习研究 被引量:8

Research of ontology learning based on non-structured data
下载PDF
导出
摘要 语义Web的创建需要一套共同的标准概念体系,即本体(Ontology)。而现在本体的构造手段仍然是以手工构造为主,效率和准确率都非常低,很容易导致知识获取的瓶颈。近年来,自动创建领域本体可以克服手工方法的不足,成为当前的研究热点之一;本体学习是自动或半自动构建本体的一系列方法和技术。提出了一种利用知网,基于非结构化数据的特定领域概念及其之间关系的提取算法,从军事领域选取4个种子概念:舰、导弹、机和炮,并通过实验测试了该算法。 Establishment of semantic Web requires a set of common standard concept system,namely ontology.Manual ontology construction has low efficiency and accuracy now which can easily result in a knowledge acquisition bottleneck.Overcoming the deficiency of the manual methods,the semi-automatic or automatic methods of building ontology are becoming the hotspot of current research recently,namely,ontology learning.Ontology learning is the set of methods and techniques used for building ontology in an automatic or semi-automatic fashion using several sources.A method is presented for discovering domain-specific concepts and relationships based on non-structured data through using HowNet in this paper.The method is tested on four seed concepts selected from the martial domain: warship,missile,plane,and gun.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第26期30-33,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2007AA04Z147 国家自然科学基金No.40746029~~
关键词 语义网 本体 本体学习 种子概念 模式 semantic Web ontology ontology learning seed concept pattern
  • 相关文献

参考文献9

  • 1Ember T R.A translation approach to portable ontology specifications[J].Knowledge System Laboratory, 1993,5 (2) : 199-220.
  • 2Lenat D B.CYC:a large-scale investment in knowledge infrastructure[J].Communications of the ACM, 1995,38( 11 ) : 33-38.
  • 3Snasel V,Moravec P,Pokorny J.WordNet ontology based model for Web retrieval[J].IEEE,2005 220-225.
  • 4Maedehe A,Staab S:Ontology learning for the semantic Web[J]. IEEE Intelligent Systems,2001,16(2):72-79.
  • 5杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 6Gomez-Perez A.A survey on ontology learning methods and techniques, IST-2000-29243 [R].Ontoweb, 2003.
  • 7Etzioni O,Cafarella M,Downey D,et M.Web-scale information extraction in knowItAll[C]//Proceedings of the 13th International World Wide Web Conference,New York , USA , 2004 :100-110.
  • 8中国标准研究院.中华人民共和国国家标准GB/T10112-1999术语工作,原则与方法[S].北京:中国标准出版社,1999.
  • 9Moldovan D,Girju R,Rus V.Domain-specific knowledge acquisition from text[C]//Proceedings of the Sixth Conference on Applied Natural Language Processing,Seattle,Washington,2000:268-275.

二级参考文献2

共引文献241

同被引文献114

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部