摘要
提出了一种基于最近邻特征线(NFL)与最近邻(NN)联合分类器进行人脸识别的方法。首先对人脸图像用主成分分析(PCA)降维,然后用快速独立变量分析(FastICA)提取独立基,分类时采用最近邻特征线和最近邻分类器的联合分类器进行分类。该方法综合了NFL和NN的优势,充分利用了同类之间相似,距离最短的性质。实验表明此方法提高了人脸识别率,是一种可行的人脸识别方法。
A face recognition method based on Nearest Feature Line(NFL) combined with Nearest Neighbor(NN) is proposed.Firstly,the human faces data project to a low dimensional space with PCA,and then the features of faces are extracted by FastICA.At last faces are recognized by a classifier which is composed by NFL combined with NN.This method adequately uses the maximum similarity and shortest distance among the same person's faces.The experiment results show that the method can get a high recognition rate.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第26期183-185,共3页
Computer Engineering and Applications
基金
教育部留学回国人员科研启动基金
河南省杰出青年基金(No.512000400)
河南省创新人才培养对象~~
关键词
主分量分析
独立变量分析
最近邻特征线分类器
最近邻分类器
Principal Components Analysis(PCA)
Independent Components Analysis(ICA)
Nearest Feature Line(NFL)
Nearest Neighbor(NN)