期刊文献+

基于聚类免疫网络的协同过滤推荐算法 被引量:6

Clustering and immune mechanisms based Collaborative Filtering recommendation algorithm
下载PDF
导出
摘要 针对传统协同过滤推荐算法进行聚类后出现的推荐精度下降问题,提出了一种利用独特型网络模型对基于用户聚类的协同过滤算法加以改进的新思路。通过引入人工免疫中动态调节抗体浓度使免疫网络保持稳定的原理来调整邻居用户的数目,以保证邻居用户的多样性达到提高精度的目的。实验结果表明,该算法相对于传统的基于聚类的协同过滤算法而言,在提高推荐速度的同时保证了推荐的精度。 For the problem that the traditional Collaborative Filtering(CF) algorithms appear lower precision after elustering,a novel algorithm is proposed which employs the idiotypic immune networks to improve the CF based on user clustering. With the mechanism of artificial immune network dynamically adjusting the consistency of antibodies as well as the neighbor numbers,the algorithm makes the immune network stable,which ensures the system's diversity,and also increases its accuracy. Simulation resuits show that the presented algorithm can improve the performance of CF systems in both the recommendation quality and efficiency.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第27期141-144,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60603026)~~
关键词 协同过滤 聚类 独特型网络 推荐系统 Collaborative Filtering(CF) clustering algorithm idiotypic networks recommendation system
  • 相关文献

参考文献6

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2Dasgupta D.Artificial immune system and their applications[M]. Heidelberg, Berlin : Springer-Verlag, 1995.
  • 3Cayzer S,Aickelin U.A recommender system based on idiotypic artificial immune networks[J].Joumal of Mathematical Modelling and Algorithms, 2005,4(2) : 181-198.
  • 4Herlocker J, Konstan J,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Trans on Information Systems (TOIS), 2004,22( 1 ) :5-53.
  • 5行小帅,潘进,焦李成.基于免疫规划的K-means聚类算法[J].计算机学报,2003,26(5):605-610. 被引量:81
  • 6Cayzer S,Aickelin U.A recommender system based on the immune network[C]//Proceedings CEC2002,2002 : 807-813.

二级参考文献19

  • 1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
  • 9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
  • 10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.

共引文献226

同被引文献42

  • 1邬依林,李中华,毛宗源.自适应人工免疫算法在数据挖掘中的应用[J].计算机应用,2006,26(8):1943-1946. 被引量:9
  • 2孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 3邬依林.基于自适应人工免疫网络算法的数据挖掘[J].计算机工程与应用,2007,43(4):194-197. 被引量:6
  • 4李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 5SARWAR B M,KARYPIS G.Application of dimensionality reduction in recommender systems: a case study[C].ACM Web- KDD Web Mining for E-commerce Workshop,2000:82-90.
  • 6OYANAGI S, KUBOT K, NAKASE A. Application of matrix clustering to web log analysis and access prediction[C] .San Francisco,USA:Proceedings of the WebKDD Workshop,2005:13-21.
  • 7CAYZER S,AICKELIN U.A recommender system based on the immune network[C].proceedings of the Special Sessions on Artificial Immune Systems in Congress on Evolutionary Computation, IEEE World Congress on Computational Intelligence,2002.
  • 8CAYZER S, AICKELIN U. A recommender system based on idiotypic artificial immune networks[J]. Journal Mathematical Modeling and Algorithms,2005,4(2): 181-198.
  • 9MERVE ACILAR A,AHMET ARSLAN.A collaborative filtering method based on artificial immune network[J].Expert Systems with Applications,2009,36(4):8324-8332.
  • 10DE CASTRO,VON L N,ZUBEN F J.aiNet: an artificial immune network for data analysis[C]. USA:Data Mining:A Heuristic Approach Hershey,2001:231-259.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部