期刊文献+

基于粗细粒交叉的搜索算法 被引量:4

Free search algorithm based on coarse-grained and fine-grained crossover
下载PDF
导出
摘要 针对一种新的群集智能——自由搜索优化的不足,提出了基于粗细粒交叉的搜索算法.该算法定义了粗粒交叉和细粒交叉两种算子.通过粗粒交叉,有利于产生新的优秀个体,提高算法的全局搜索能力;采用细粒交叉,在搜索半径内产生更多的优良基因,提高局部搜索能力.典型函数的实验结果表明:新算法的收敛速度、收敛精度、鲁棒性和稳定性大大优于基本自由搜索优化和标准微粒群算法. A novel free search algorithm based on coarse-grained and fine-grained cossover is proposed by combining free search with genetic algorithm. The algorithm defines two basis operators including coarse-grained cossover and fine-grained cossover. The operators of coarse-grained cossover make the algorithm obtain strong global exploring ability, and the operators of fine-grained cossover make the algorithm have strong local searching ability. Experimental results show that the convergence speed, the convergence probablity, the robustness and the stability of the algorithm are better than those of basic free search algorithm and particle swarm optimization.
出处 《控制与决策》 EI CSCD 北大核心 2008年第9期1068-1072,共5页 Control and Decision
基金 国家自然科学基金项目(60474076) 江苏省高校自然科学基础研究项目(07KJB510095)
关键词 群集智能 自由搜索优化 微粒群算法 交叉 遗传算法 Swarm intelligence Free search(FS) Particle swarm optimization(PSO) Crossover Genetic algorithm
  • 相关文献

参考文献10

  • 1Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [C]. Proc 1st European Conf on Artificial Life. Pans: Elsevier, 1991:134-142.
  • 2Dorigo M, Blum C. Ant colony optimization theory: A survey[J]. Theoretical Computer Science, 2005, 344: 243-278.
  • 3Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 4黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 5Penev K, Little{air G. Free search -- A comparative analysis[J]. Information Science, 2005, 172(1) : 173- 193.
  • 6周晖,李丹美,邵世煌,袁从明.一种新的群集智能算法——自由搜索[J].东华大学学报(自然科学版),2007,33(5):579-583. 被引量:17
  • 7Penev K. Adaptive computing in support of traffic management[J]. Adaptive Computing in Design and Manufacturing, 2004, 22 (4) : 20-22.
  • 8Zhou Hut, Li Dan-met, Shao Shi-huang, et al. A novel intelligent estimation algorithm in WSN location bsed on free search [ C ]. IEEE Int Conf on Wireless Communication of Networking and Mobile Computing. Shanghai, 2007: 2629-2632.
  • 9玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2005.1,22-23,42-45,178-183.
  • 10Ioan Cristian Trelea. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85 (6) : 317-325.

二级参考文献18

  • 1黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 2Mostaghim S,Teich J.Strategies for Finding Local Guides in Multi-objective Particle Swarm Optimization (MOPSO)[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:26-33.
  • 3Shi Y,Eberhart R C.A modified Particle Swarm Optimizer[A].Proc of the IEEE Congress on Evolutionary Computation[C].Piscataway,1998:69-73.
  • 4Eberhart R C,Shi Y.Particle Swarm Optimization:Developments,Applications and Resources[A].Proc of the IEEE Congress on Evolutionary Computation[C].Seoul,2001:81-86.
  • 5Schutte J F,Reinbolt J A,Fregly B J,et al.Parallel Global Optimization with the Particle Swarm Algorithm[J].Int J Numerical Methods in Engineering,2004,61(13):2296-2315.
  • 6Peram T,Veeramachaneni K,Mohan C K.Fitness-distance-ratio Based Particle Swarm Optimization[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:174-181
  • 7Brian Birge.PSOT-A Particle Swarm Optimization Toolbox for Use with Matlab[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:182-186.
  • 8Erick Cantu Paz,David E Goldberg.Efficient Parallel Genetic Algorithms:Theory and Practice[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2):221-238.
  • 9Enrique Alba,José M Troya.Analyzing Synchronous and Asynchronous Parallel Distributed Genetic Algorithms[J].Future Generation Computer Systems,2001,17(4):451-465.
  • 10Ioan Cristian Trelea.The Particle Swarm Optimization Algorithm:Convergence Analysis and Parameter Selection[J].Information Processing Letters,2003,85(6):317-325.

共引文献72

同被引文献52

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部