期刊文献+

基于概率神经网络和分形的植物叶片机器识别研究 被引量:11

Leaf recognition for plant based on Probabilistic Neural Networks and fractal
下载PDF
导出
摘要 【目的】提出一种将植物叶片的形状特征与其纹理特征相结合的综合特征识别方法,有效解决了传统的植物机器识别分类特征单一且识别率较低的问题,为植物的快速机器识别提供技术参考。【方法】提取植物叶片样本的综合特征信息,以概率神经网络(PNN)为分类器对所得的特征信息进行训练,训练好的网络用来识别植物叶片的类别,从而确定相应植物的种类。【结果】有效提取了含有8个分量的植物叶片综合特征向量,通过对PNN分类器的训练,实现了30种植物叶片的快速机器识别,平均识别率达98.3%。比较测试表明,若去掉叶片纹理特征,单以其形状特征作为识别依据,平均识别率仅为93.7%。【结论】植物叶片综合特征识别方法有效弥补了传统单特征识别方法的不足,使识别效率得到了较大的提高。 [Objective]This paper gave a recognition approach, which combined the shape feature and the texture feature of the plant leaf, to effectively solve the problem that the classification features of traditional plant recognition were usually not synthetic and the recognition rate was always slightly low,hoping to provide technical reference for rapid machine recognition for plant. [Method] Firstly, the synthetic features of leaf were extracted; secondly the values of synthetic features of leaf, which had been extracted, were put into a classifier, which is Probabilistic Neural Networks(PNN), to be trained; finally, the PNN trained well could work to classify the plant leaves. [Result] The synthetic feature vector of plant leaf, which included 8 elements, were extracted efficiently. By training the classifier PNN, the rapid recognition for thirty kinds of plant leaves was realized and the average recognition rate reached 98.3 %. Comparison tests demonstrated that if the shape features of plant leaf was solely used as the recognition features without the texture features, the average recognition rate just reached 93.7%. [Conclusion] The synthetic feature recognition method has effectively made up for the drawbacks of traditional recognition method to-wards unitary feature, strongly advancing the recognition rate.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2008年第9期212-218,共7页 Journal of Northwest A&F University(Natural Science Edition)
基金 西北农林科技大学专项基金项目(0808008080209)
关键词 植物叶片 机器识别 概率神经网络 分形维数 特征提取 plant leat machine recognition Probabilistic Neural Network tractal dimension feature extraction
  • 相关文献

参考文献21

  • 1Ingrouille M J,Laird S M. A quantitative approach to oak vari ability in some north London woodlands [J]. Lond Nat, 1986, 65: 35-46.
  • 2Guyer D E, Miles G E, Schreiber M M,et al. Machine vision and image processing for plant identification [J]. Trans ASAE, 1986,29 : 1500-1507.
  • 3Guyer D E,Miles G E,Gaultney I. D, et al. Application of machine vision to shape analysis in leaf and plant identification[J]. Trans ASAE, 1993,36 : 163-171.
  • 4McDonald T, Chen Y R. Application of morphological image processing in agriculture [J]. Trans ASAE, 1990,33(4) : 1345- 1352.
  • 5Shearer S A, Holmes R G. Plant identification using color cooccurrence matrices[J]. Trans ASAE, 1990, 33 (6): 2037- 2044.
  • 6Timmermans A J M, Hulzebosch A A. Computer vision system for on-line sorting of pot plants using an artificial neural network classifier[J]. Computers and Electronics in Agriculture, 1996,15(1) :41-55.
  • 7Yonekawa S,Sakai N,Kitani O. Identification of idealized leaf types using simple dimensionless shape factors by image analysis [J]. Trans ASAE,1996,39(4): 1525-1533.
  • 8Abbasi S, Mokhtarian F, Kittler J. Reliable classification of chrysanthemum leaves through curvature scale space [J]. IC SSTCV, 1997,97: 284-295.
  • 9王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 10Cai Y D,Liu X J,Chou K C. Artificial neural network for predicting protein sub cellular location [J]. Computers and Chemistry, 2002,26: 179-182.

二级参考文献37

  • 1费旭东,王文剑,荆仁杰.二值图边界的快速提取[J].信号处理,1994,10(3):130-138. 被引量:10
  • 2葛澎.一种快速边缘跟踪与提取的新算法[J].微电子学与计算机,2005,22(8):14-17. 被引量:10
  • 3Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis and Machine Vision[M],Second Edition,Beijing:Posts & Telecom Press, 2002.
  • 4T W Ridler,S Calvard.Picture Thresholding Using An herative Selection Method[J].IEEE Transaction on System,Man and Cybernetics, 1978;8(8) :630-632.
  • 5H Freeman.On the encoding of arbitrary geometric configuratinns[J]. IRE Trans on Electronic Computers,1961;EC-10:260-268.
  • 6M K Hu.Visual Pattern Recognition by Moment Invariants[J].IRE Transaction Information Theory, 1962; 8 (2) : 179- 187.
  • 7Chaur-Chin Chen.Improved Moment Invariants for Shape Discfimi, nation[J].Pattem Recognition, 1993 ;26(5 ) :683-686.
  • 8D S Huang.The local minima free condition of feedforward neural networks for outer-supervised learning[J].IEEE Transaction on Systems, Man and Cybernetics, 1993 ; 28B (3) :477-480.
  • 9章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 10Ash A W, Ellis B, Hickey L J, Johnson K R, Will P, Wing S L, 1999. Manual of Leaf Architecture: Morphological Description and Categorization of Dicotyledonous and Net-Veined Monocotyledonous Angiosperms. Washington D C: Smithsonian Institution, 26~27

共引文献153

同被引文献118

引证文献11

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部