期刊文献+

基于差分进化的并联机器人位姿正解 被引量:4

Forward Kinematics of Parallel Manipulators Based on Differential Evolution
下载PDF
导出
摘要 利用并联机器人位姿反解容易求取的特点,把并联机器人的位姿正解问题转化为假设已知位姿正解,通过位姿反解求得杆长值,并使所求得的杆长值与给定的杆长值之差为最小的优化问题,然后利用差分进化的全局寻优能力来直接求解并联机器人的位姿正解.6-SPS型并联机器人位姿正解的数值仿真结果表明,该方法较遗传算法求解精度高且收敛速度快,经过508步迭代之后,位置误差小于0.000 1 mm,姿态误差小于0.000 1°.该方法不仅避免了繁琐的数学推导和迭代初值的选取,又可以获得符合精度要求的运动学正解,为解决并联机器人正向运动学问题提供了新的计算策略. The forward kinematics problem of a parallel manipulator was transformed into an optimization problem which is easy to obtain its inverse kinematics. A differential evolution (DE) algorithm was used to directly obtain a globally optimal solution of forward kinematics by minimizing the difference between the computed and the given link length. The computed length of each link can be obtained by solving the inverse kinematics. The numerical simula- tion results of a 6-SPS parallel manipulator show that compared with genetic algorithm, the DE algorithm performs well in terms of the quality of the solution and the speed of convergence. The errors of the position and pose are smaller than 0. 000 1 mm and 0. 000 10 after 508 generations. The proposed method can not only avoid the complicated mathematical derivation and the selection of initial iterative values, but also get high accuracy of forward kinematics, which provides a new way for solving the forward kinematics of parallel manipulators.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2008年第5期664-669,共6页 Journal of China University of Mining & Technology
基金 高等学校博士学科点专项科研基金项目(20070290537) 国家博士后科学基金项目(20070411064) 江苏省博士后科学基金项目(0601033B) 江苏省青蓝工程(苏教师[2007]2号) 中国矿业大学科技基金资助(0C080302)
关键词 并联机器人 位姿正解 位姿逆解 差分进化 parallel manipulator forward kinematics inverse kinematics differential evolution
  • 相关文献

参考文献10

二级参考文献59

  • 1[9]Bonev I A, Ryu J. A new method for solving the direct kinematics of general 6-6 Stewart platform using three linear extra sensors[J]. Mechanism and Machine Theory, 2000,35(1):423-436.
  • 2[10]Dasgupta B, Choudhury P. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J]. Mechanism and Machine Theory, 1999,34(6):801-824.
  • 3[4]Dasgupta B, Mruthyunjaya T S.The Stewart plat-form manipulator: a review[J]. Mechanism and Machine Theory, 2000,35(1):15-40.
  • 4[5]Gosselin C. Parallel computational algorithms for the kinematics and dynamics of planar and spatial parallel manipulators[J]. ASME J of Dynamic Systems, Measurement and Control, 1996,118(1):22-28.
  • 5[6]Geng Z, Haynes L. Neural network solution for the forward kinematics problem of a Stewart platform[A]. International Conference on Robotics and Automation,Proceedings of the IEEE[C]. Automn, 1991.2650-2655.
  • 6[7]Boudreau R, Tukkan N. Solving the forward kinematics of parallel manipulators with a genetic algorithm[J]. Journal of Robotic System, 1996,13(2):111-125.
  • 7[8]Han K Y, Hung, Youm W Y. New resolution scheme of the forward kinematics of parallel manipulators using extra sensors[J]. Transactions of the ASME J of Mech Design, 1996,118(2):214-219.
  • 8Gosselin C,Angles J.The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator[J].J Mech Tran Automat Design,1989,111(2):202-207.
  • 9Bhattacharaya S,Hatwal H,Ghosh A.On the optimum design stewart platform type parallel manipulators[J].Robotica,1995,13:113-140.
  • 10Merlet J P.Designing a parallel manipulator for a specific workspace[J].The International Journal of Robotics Research,1997,16(4):545-556.

共引文献56

同被引文献140

引证文献4

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部