期刊文献+

广义变系数KdV方程的Painlevé分析和自Bcklund变换

Painlevé Analysis and Auto-Bcklund Transformations for the General Variable Coefficient KdV Equation
下载PDF
导出
摘要 利用符号计算对系数函数是x和t的函数的广义变系数KdV方程进行了Painlev啨分析,将方程解的广义Laurent展开式u(x,t)=p(x,t)∑∞j=0uj(t)j(x,t)代入方程,整理的各次幂的系数并令其为零,得到p的值以及关于uj的递推关系及共振点,由其相容条件恒成立知原方程具有Painlev啨性质.同时利用Painlev啨截断法给出了广义变系数KdV方程的一个自Bcklund变换,自Bcklund变换是联系同一个偏微分方程的解的变换,通过方程的一个解可以求出方程的另一个解,作为例子根据得到的自Bcklund变换给出了方程的两组精确解. With symbolic computation, a Painleve analysis for the KdV (gvc KdV) equation is carried out. The Laurent expansion general variable coefficient KdV(gve KdV)equation is carried out.The Laurent expansion equation u(x,t)=Ф^p(x,t)∑∞j=0uj(t)Ф^j(x,t) is substituted into the gvcKdV equation and recursive relations and resonant points are obtained. Since its conditions are consistent, the equation meets the conditions for a Painleve analysis. Using the Painleve truncation method, an auto-Backlund transformation is presented. The auto-Backlund transformation is a system of equations relating the solution of a given equation to another solution of the same equation. Under the auto-Backlund transformation, analytic solutions can be obtained, including solitonic profiles. To illustrate, two families of analytic solitonic solutions are presented via the auto-Backlund transformation.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2008年第5期725-728,共4页 Journal of China University of Mining & Technology
基金 北京市优秀人才资助项目(20061D0500700171)
关键词 广义变系数KdV方程 PAINLEVE分析 自B/icklund变换 符号计算 general variable-ciefficient KdV equation Painleve analysis auto-Backlund trans-formation symbolic computation
  • 相关文献

参考文献15

  • 1张解放,陈芳跃.截断展开方法和广义变系数KdV方程新的精确类孤子解[J].物理学报,2001,50(9):1648-1650. 被引量:111
  • 2刘式适,刘适达.物理学中的非线性方程[M].北京:北京大学出版社,2001.
  • 3郭柏灵.非线性演化方程[M].上海:上海科技教育出版社,1998:27-29.
  • 4TIAN B, GAO Y T. Variable-coefficient balancingact method and variable-coefficient KdV equation from fluid dynamics and plasma physics[J]. The Eu ropean Physical Journal, 2001 ,B22 : 351-360.
  • 5FAN E G, Auto-backlund transformation and similarity reductions for general variable coeffcient KdV equations[J]. Physics Letters A, 2002(294): 26-30.
  • 6TIAN B, GAO Y T, Variable-coefficient higher-or- der nonliner schrodinger model in optical fibers: Eew transformation with burstons,brightons and symbolic computation[J]. Physics Letters A, 2006, 359: 241-248.
  • 7魏光美,许晓革.一类变系数KdV方程的Painlevé分析和自Bcklund变换[J].数学的实践与认识,2006,36(6):308-312. 被引量:3
  • 8GAO Y T, XU X G, TIAN B. Variable-coefficient forced Burgers system in nonlinear fluid mechanics and its possibly observable effects[J].International Journal of Modern Physics C, 2003, 14 (9): 1207- 1222.
  • 9ABLOWITZ M J, CLARKSON P A. Solitons, nonlinear evolution equations and inverse scattering[M]. Cambridge University Press,1991: 373-375.
  • 10WEISS J, TABOR M, CARNEVAALE G. The paninleve property for partial differential equations[J].Journal of Mathematical Physics,1983,24(3) : 522-526.

二级参考文献25

  • 1Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering In: London Mathematical Society Lecture Note Series vol 149( Cambridge: Cambridge University Press).
  • 2Miura M R 1978 Backlund Transformation (Berlin: Springer-Verlag).
  • 3Hirota R 1971 Phys. Rev. Lett. 27 1192.
  • 4Malfliet W 1992 Am. J. Phys .60 659.
  • 5Lou S Y et al 1992 Acta Phys. Sin. 42 182(in Chinese).
  • 6Liu X Q 1998 Appl. Math. -J. Chinese University B 13 25.
  • 7Zhang J F et al 2001 Acta Phys. Sin. 50 1648(in Chinese).
  • 8Yan Z Y et al 1999 Acta Phys. Sin. 48 1957(in Chinese).
  • 9Chan W L and Zhang X 1994 J. Phys. A : Math. Gen . 27 407.
  • 10Chan W L and Li K S 1989 J. Math. Phys. 30 2521.

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部