摘要
文章主要研究完备非紧的Khler流形,得到2个定理。首先在Khler流形有非负有界的全纯双截曲率和平均数量曲率满足一定的条件下得到关于数量曲率的一个积分估计和流形在不同时刻度量条件下体积保持极大增长的条件;其次在Khler流形有非负的全纯双截曲率,Ricci曲率有界和平均数量曲率满足一定条件下得到它双全纯等价于平坦的Khler流形的结果。
In the paper, Kaehler manifolds are studied, and two results are gotten. First, as Kahler manifolds with nonnegative bisection curvature exist and some conditions of average scalar curvature are satisfied, an integral estimate of scalar curvature and the condition of manifolds which have maximal volume growth are obtained. Second, as Kahler manifolds with nonnegative bisection curvature exist, and Ricci curvature is bounded, and some conditions of average scalar curvature are satisfied, the studied Kahler manifolds are isometrically biholomorphic to fiat,complete Kahler manifolds.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第9期1528-1531,共4页
Journal of Hefei University of Technology:Natural Science
基金
安徽省教育厅重点资助项目(kj2008B237)
安徽建筑工业学院博士启动基金(2007-6-3)