期刊文献+

胰腺内镜超声图像纹理特征提取与分类研究 被引量:6

Texture Feature Extraction and Classification of Pancreatic Endoscopic Ultrasonography Images
下载PDF
导出
摘要 提出了胰腺内镜超声图像的纹理特征提取与分类方法,可应用于胰腺癌内镜超声图像的计算机辅助诊断。对胰腺内镜超声图像采用数字图像处理算法提取9大类共69个纹理特征。使用类间距作为可分性判据,实现特征的初步筛选,之后使用顺序前进搜索算法进一步筛选特征,并由支撑向量机实现分类。对216例病例随机选取训练集和测试集,通过多次随机实验表明,本文提出的算法实现了较高的分类准确率,为胰腺癌的临床诊断提供有价值的参考意见。 The method of texture feature extraction and classification of pancreatic endoscopic uhrasonogra- phy(EUS) images is proposed, which can be applied to the computer-aided diagnosis of pancreatic EUS images. 69 texture features of 9 feature sets are extracted from the pancreatic EUS images according to the digital image pro- cessing algorithm. Dis "tance between classes is chosen as the separability criterion to select the features in the first step, then the Sequential Forward Selection algorithm is performed to further select the features. The classification is realized based on the support vector machine. The train set and test set are randomly chosen from 216 cases. Tests performed show that the proposed method result in a high classification accuracy, which will provide the phy- sician a valuable opinion on the diagnosis of pancreatic cancer.
出处 《生物医学工程学进展》 CAS 2008年第3期141-145,共5页 Progress in Biomedical Engineering
基金 上海市重点学科建设项目(B112)
关键词 胰腺癌 内镜超声 纹理特征 模式分类 Pancreatic Cancer EUS texture feature pattern classification
  • 相关文献

参考文献14

  • 1[1]陆星华,李益农.消化内镜学[M].第2版,北京:科学出版社.2004:577
  • 2汪毅,赵平.胰腺癌早期诊断的现状与进展[J].癌症进展,2006,4(4):327-332. 被引量:4
  • 3张定国,崔毅.超声内镜对胰腺疾病的诊断价值[J].国际内科学杂志,2007,34(3):159-162. 被引量:4
  • 4[5]C.L Christodoulou,C.S.Pattichis et al.Texture-based classification of atherosclerotic carotid plaques[J].IEEE Trans.Med.lmag,2003,22(7):902-912
  • 5[6]Chung-Ming Wu,Yung-Chang Chen Chen et al.Texture Fea-tares for Classification of UItrasonic Liver Images[J].IEEE Trans.Med.Imag,1992,11(2):141-152
  • 6[7]Yong Xia et a.Morphology-Based Muitifractal Estimation for Texture Segmentation[J].IEEE Trans.lmage.Process-ing,2006,15(3):614-623
  • 7[8]R.M.Haralick,et al.Texture features for image classifi-cation[J].IEEE Trans.Syst.,Man,Cybern,1973,SMC-3:610-621
  • 8[9]J.S.Weszka,et al.A comparative study of texture meas-ures for terrain classification[J].IEEE Trans.Syst.,Man,Cybern,1976.,SMC-6
  • 9[10]M.Amadasun and R.King[J].Textural features corre-sponding te textural properties.IEEE Trans.Syst,Man,Cybern,1989,19:1264,269-1274,285,
  • 10[11]K.I.Laws.Rapid texture identification.[J].Proc.SPIE,1980,238:376-380

二级参考文献57

  • 1[2]Jeo CH J,Cameron JL,Lilemoe KD,et al.Pancreatic-duodenectomy for cancer of the head of the pancreas-201 patients.Ann Surg,1995,221:721
  • 2[3]Dimagno EP.Pancreatic cancer:Clinical presentation,pitfalls and early clues.Ann Oncol,1999,10 (Suppl 4):S140
  • 3[4]Ariyama J,Suyama M,Satoh K,et al.Imaging of small pancreatic ductaladenocarcinoma.Pancreas,1998,16 (3):396
  • 4[5]Goggins M.Molecular markers of early pancreatic cancer.J Clin Oncol,2005,23:4524
  • 5[6]Parks RW,Garden OJ.Ensureing early diagnosis in pancreatic cancer.Practitioner,2000,244:336
  • 6[7]Lowenfels A,Maisonneuve P.Risk factors for pancreatic cancer.J Cell.Biochem,2005,95:649
  • 7[8]Lygidakis NJ,Jain S,Sacchi M,et al.Adenocarcinoma of the pancreas-past,present and future.Hepatogastroenterology,2005,52:1281
  • 8[9]Lowenfels A,Maisonneuve P,Dimagno E,et al.Hereditary pancreatitis and the risk of pancreatic cancer,J Natl Caner Inst,1997,89:442
  • 9[10]Howes N,Greenhalf W,Neoptolemos J.Screening for early pancreatic ductal adenocarcinoma in hereditary pancreatitis.Med Clin North Am,2000,84 (3):719
  • 10[11]Lowenfels AB,Maisonneuve P,Whitcomb DC,et al.Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis.JAMA,2001,286:169

共引文献6

同被引文献54

  • 1张定国,崔毅.超声内镜对胰腺疾病的诊断价值[J].国际内科学杂志,2007,34(3):159-162. 被引量:4
  • 2Wang Lei.Feature Selection with Kernel Class Separability.IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30 (9):1534-1546.
  • 3Liu Huan,Yu Lei.Toward Integrating Feature Selection Algorithms for Classification and Clustering.IEEE Trans on Knowledge and Data Engineering,2005,17(4):491 -502.
  • 4Webb A R.Statistical Pattern Recognition.2nd Edition.New York,USA:John Wiley & Sons,2002.
  • 5Narendra P M,Fukunaga K.A Branch and Bound Algorithm for Feature Subset Selection.IEEE Trans on Computers,1977,26 (9):917 -922.
  • 6Liu H,Motoda H.Feature Selection for Knowledge Discovery and Data Mining.Boston,USA:Kluwer Academic,1998.
  • 7Busetti F.Simulated Annealing Overview[EB/OL].[2009-05-03].http://www.geocities.com/francorbusetti/saweb.pdf.
  • 8Muller K R,Mika S,Ratsch G,et al.An Introduction to KernelBased Learning Algorithms.IEEE Trans on Neural Networks,2001,12(2):181 -201.
  • 9Weston J,Mukherjee S,Chapelle O,et al.Feature Selection for SVMs//Proc of the Annual Conference on Neural Information Processing Systems.Denver,USA,2000:668-674.
  • 10Ducreux M,Boige V,Malka D.Treatment of advanced pancreatic cancer[J].Semin Oncol,2007.34,(Suppl.1):25-30.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部