期刊文献+

纳米组织Zr-4合金氧化膜中应力应变研究 被引量:1

Research on stress-strain of oxide films of nanocrystalline Zircaloy-4
下载PDF
导出
摘要 研究纳米组织与普通粗晶组织Zr-4合金在400℃水腐蚀过程中氧化膜内应力的演变特征。结果表明,纳米基底上形成的单斜相ZrO2(m-ZrO2)和四方相ZrO2(t-ZrO2)的微观应变值,比普通基层上形成的m-ZrO2和t-ZrO2相的微观应变值大,160d时普通基底上t-ZrO2相的σ值约为1200MPa,而在纳米基底上的t-ZrO2相的σ值则为1900MPa,说明表面纳米化处理后Zr-4合金氧化膜内,氧化膜/金属界面(O/M界面)处所受的压应力比普通组织的O/M界面所受的压应力大。纳米化后均匀细小的晶粒尺度以及高的压应力,有利于在O/M界面处形成一层具有保护作用的致密的腐蚀产物膜(t-ZrO2层),从而改善Zr-4合金的抗腐蚀性能。 The stress evolution characteristic in the oxide films of the nanostructure and normal structure Zr-4 alloy in the water at 400 ℃ was studied in this paper. The results indicate that the micro strain of m-ZrO2 and t-ZrO2 formed in the nanostructure is larger than that formed in the normal structure. The σ value of t-ZrO2 formed in the normal bases is about 1 200 MPa, and the σ value of the t-ZrO2 formed in the nanocrystalline bases is about 1 900 MPa after 160 days. It explains that the compressive stress of the oxide film/metal interface in the nanocrystalline is larger than that in the coarse grain. After nanocrystallized treatment,the homogeneous grain size and high compressive stress are beneficial to forming a compact oxide film (t-ZrO2) which has the protection effect,and that can improve the resistant corrosion of the zircaloy-4 alloy.
出处 《兵器材料科学与工程》 CAS CSCD 北大核心 2008年第3期38-41,共4页 Ordnance Material Science and Engineering
基金 国家自然科学基金(50461001) 核材料与燃料国家级重点实验室基金(514810501) 广西大学重点基金(2005ZD04)资助
关键词 氧化膜 应力 应变 ZR-4合金 纳米金属 水腐蚀 oxidation film stress strain zircaloy--4 nanocrystallization metal water corrosion
  • 相关文献

参考文献18

  • 1张喜燕,李聪,刘年富,张强,石明华,邱绍宇.纳米结构锆合金组织氧化膜结构演变的XRD分析[J].核动力工程,2007,28(6):71-75. 被引量:8
  • 2Zhang X Y, Shi M H, Li C, et al. The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal [J]. Materials Science and Engineering A, 2007(448):259- 263.
  • 3Ortiz M,Pochettino A A. Intergranular thermal stresses in zirconium-effects on X-rays macrostress measurements [J ]. Nucl Mater, 1996,229 : 65-72.
  • 4Garzarolli F, Seidsl H, Tricot R,et al. Oxide growth mechanism on zircaloy[C]. New York :Zirconium in the nuclear industry, 1991 : 395-415.
  • 5Snyder R L, Bunge H J, Fiala J. Defect and microstructure analysis by diffraction [M]. America:Oxford university press, 1999:41-56.
  • 6Gosmain L,Valot C,Ciosmak D,et al. Study of stress effeels in the oxidation of zircaloy-4 [J]. Solid State Ionics, 2001,141- 142 : 633-640.
  • 7Bradhurst D H,Heuer P M. The influence of oxide stress on the breakaway oxidation of zircaloy-2 [J]. Nucl Mater, 1970 (37) : 35-47.
  • 8David G,Geschier R,Roy C. Etude de la croissance de 1' oxyde sur le zirconium et le zircaloy-2[J]. Nucl Mater, 1971 (38) : 329-339.
  • 9Garvie R C,Alper A M. High temperature oxides:part (II) [ M ]. New York : Academic press, 1970 : 18-32.
  • 10Livage J,Bull J. Hydrated amorphous zirconium oxide [J]. Chim Soc Fr 2,1968 ( 115 ) : 507-508.

二级参考文献54

共引文献80

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部