期刊文献+

分数阶统一系统的混沌动力学特性 被引量:7

Chaotic Dynamic Characteristics of Fractional-Order Unified System
下载PDF
导出
摘要 针对分数阶非线性系统普遍具有混沌特性的问题,采用观测系统吸引子相图、计算功率谱密度和最大Lyapunov指数等方法,分别分析了当参数固定(a=1)和变化时,分数阶统一系统随微分算子阶数变化时的动力学特性,得出了分数阶统一系统随系统参数和系统阶数变化而出现混沌状态的规律,研究了分数阶系统通向混沌的道路.研究表明:分数阶统一系统的动力学状态既与系统参数有关,又与系统的分数阶大小有关;在参数固定或参数变化时,分数阶统一系统均随阶数变化而分段呈现混沌状态;当微分算子阶数为0.3时,分数阶统一系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.由此可见,分数阶统一系统具有丰富的动力学特性. In order to investigate the chaos generally existing in nonlinear fractional-order systems, the dynamic characteristics of the fractional-order unified system varying with the differential operator orders respectively with fixed ( a = 1 ) and variable parameter are analyzed by observing the phase diagrams of system attractors and by calculating the power spectral density and the maximum Lyapunov exponent. The rules of chaos occurrence in the fractional-order unified system varying with the system parameter and the fractional order are then obtained, Moreover, the routs to chaos in the fractional order unified system are studied. The results show that ( 1 ) the dynamic states of the fractional-order unified system are related to both the system parameter and the fractional order; (2) the fractional-order unified systems with fixed and variable parameter are all piecewise chaotic at different fractional orders ; and (3) with the variation of system parameter at a differential operator order of 0.3, the fractional-order unified system enters into chaotic state by transient chaos and boundary crisis bifurcation. It is thus concluded that the fractional-order unified system is of complex dynamic characteristics.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第8期6-10,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60672041) 中国博士后基金项目(20070420774)
关键词 分数阶系统 统一混沌系统 混沌 动力学特性 fractional-order system unified chaotic system chaos dynamic characteristic
  • 相关文献

参考文献18

  • 1Mandelbort B B. The fractal geometry of nature [ M ]. New York : Freeman, 1983.
  • 2Hartly T T,Lorenzo C F, Qammer H K. Chaos in a fractional order Chua's system [ J]. IEEE Trans CAS-I, 1995, 42(8) :485-490.
  • 3Ahmad W, Sprott J C. Chaos in fractional-order autonomous nonlinear systems [ J ]. Chaos, Solitons & Fractals,2003,16(2) :339-351.
  • 4Arena P, Caponetto R, Fortuna L, et al. Chaos in fractional order Duffing system [ C ]//Proceedings of the ECCTD. Budapest:European Circuit Society ( ECS), 1997 : 1 259- 1262.
  • 5Ahmad W, EI-Khazali R, EI-wakil A. Fractional-order Wien-bridge oscillator [ J ]. Electronics Letters, 2001,37 (18) :1 110-1 112.
  • 6高心,周红鸥.分数阶系统的混沌特性及其控制[J].西南民族大学学报(自然科学版),2006,32(2):290-294. 被引量:7
  • 7Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system [ J ]. Phys Rev Lett, 2003,91 ( 3 ) : 034101-1-034101-4.
  • 8Li C G, Chen G R. Chaos in the fractional order Chen system and its control [ J ]. Chaos, Solitons & Fractals ,2004, 22( 3 ) :549-554.
  • 9Arena P, Caponetto R, Fortuna L, et al. Bifurcation and chaos in non-integer-order-cellular neural netwoks [ J ]. Int J Bifurcation and Chaos, 1998,8 (7) : 1527:-1539.
  • 10Li C G, Chen G R. Chaos and hyperchaos in the fractional order Rossler equations [ J ]. Physica A, 2004,341 ( 1 ) :55-60.

二级参考文献15

共引文献65

同被引文献55

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部